
PDE 1, WS 2018-2019 Written exam - exercise January 14, 2019

Each step must be carefully justified. If you use some lemma or theorem do not forget to check
that all assumptions are satisfied.

Given name and family name:

Question 1 2 3 Score

Maximum points 0 100 100 200

Points

1.[0] Define the Sobolev space W 1,p(Ω). For which p’s is it separable, reflexive or Hilbert?

Solution:

See lecture.
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2.[100] Formulate and prove the equivalent characterization of Sobolev spaces via difference quoti-
ents.

Solution:

This exam was slightly special because there was just one student. Therefore he got some
hints for the proof of this theorem during the exam because the proof was not discussed
during lectures. But in remaining exams it will not be the case.
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3.[100] Let Ω ⊂ R2 be Lipschitz and T > 0. Consider the problem

∂u

∂t
− ∂2u

∂x2
1

+ 10
∂u

∂x1∂x2
− 26

∂2u

∂x2
2

=
∂f

∂x1
in (0, T )× Ω,

u = 1 on (0, T )× ∂Ω,

u(0) = u0 in Ω.

10% Find the optimal (largest) function spaces corresponding to f and u0 and define a notion
of a weak solution. Check that for given data such a definition is meaningful.

30% Prove that for any such f and u there exists unique weak solution. (If you use some
theorem, check all assumptions!!!)

25% Show that if f ∈ L2(0, T ;W 1,2(Ω)) and u0 ≡ 0 then u ∈ L∞loc(0, T ;W 1,2(Ω)). Can be
also u ∈ L∞(0, T ;W 1,2(Ω)).

35% Consider that there exists τ > 0 such that f(t+ τ, x) = f(t, x) for all (t, x). Show that
there exists unique u0 for which the corresponding weak solution is time periodic with
period τ . (Hint: Consider the mapping u0 7→ u(τ) and show that it is a contraction.)

Solution:

First, we deal with the Dirichlet problem, therefore all test functions will have
the zero trace. So, we denote V := W 1,2

0 (Ω) and the corresponding Gelfand triple is
V ↪→ H(= L2(Ω)) = H∗ ↪→ V ∗. Since we expect the solution u to be continuous with
respect to time with values in L2(Ω), we require u0 ∈ L2(Ω). Finally, to give a good
meaning to the right hand side, it is enough to assume that f ∈ L2(Ω). Thus, we say that
u is a weak solution iff (u − 1) ∈ L2(0, T ;V ) (here we specify the boundary conditions
on (0, T )×Ω), ∂tu ∈ L2(0, T ;V ∗), u(0) = u0 and for all ϕ ∈ V and almost all t ∈ (0, T )

〈∂tu, ϕ〉V +

∫
Ω

∂u

∂x1

∂ϕ

∂x1
+ 26

∂u

∂x2

∂ϕ

∂x2
−A ∂u

∂x1

∂ϕ

∂x2
− (10−A)

∂u

∂x2

∂ϕ

∂x1
= −

∫
Ω

f
∂ϕ

∂x1
.

(*)
Thanks to the assumptions on f and u all integrals are well defined (Hölder inequality)
for almost all t ∈ (0, T ). Note that we “moved”derivative on the right hand side to the
test function to keep the minimal assumptions on the regularity of f . Also notice that we
have a freedom in the choice of parameter A ∈ R (Try to prove that the notion of weak
solution is independent of the choice of A!). We just need to specify how u0 is attained.
Since u has not zero trace, we cannot directly use the theory from the lecture. However,
we have that (u − 1) ∈ L2(0, T ;V ) and also ∂t(u − 1) = ∂tu ∈ L2(0, T ;V ∗). Therefore
we know that (u− 1) ∈ C([0, T ];L2(Ω)) and consequently also u ∈ C([0, T ];L2(Ω)), so it
makes sense to talk about the value u(0).

Existence: From now we set A := 5 in order to “create”the symmetric operator. First,
we show the ellipticity. Consider arbitrary ξ = (ξ1, ξ2) ∈ R2. Then by using the Young
inequality, we obtain

ξ2
1 + 26ξ2

2 − 10ξ1ξ2 ≥ ξ2
1 + 26ξ2

2 − (
√

2
√

1− ε|ξ1|)
10√

2
√

1− ε
|ξ2|

≥ ξ2
1 + 26ξ2

2 −
2(1− ε)ξ2

1

2
− 100ξ2

2

4(1− ε)

≥ εξ2
1 +

1− 26ε

1− ε
ξ2
2 ≥ C1|ξ|2

(**)
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with some C1 > 0, which follows e.g. by setting ε := 1/50.

We look for u being of the form u = 1 + v. It means we want to find v ∈ L2(0, T ;V )
such that ∂tv ∈ L2(0, T ;V ∗) fulfilling for all ϕ ∈ V and almost all t ∈ (0, T )

〈∂tv, ϕ〉V +

∫
Ω

∂v

∂x1

∂ϕ

∂x1
+ 26

∂v

∂x2

∂ϕ

∂x2
− 5

∂v

∂x1

∂ϕ

∂x2
− 5

∂v

∂x2

∂ϕ

∂x1
= −

∫
Ω

f
∂ϕ

∂x1
,

v(0) = u0 − 1.

(***)

The existence of v can follow line by line the proof presented during lectures. So we find a
basis {wi}∞i=1 of V , which is orthonormal in L2(Ω) and look for Galerkin approximation
vn(t, x) =

∑n
i=1 a

n
i (t)wi solving for i = 1, . . . , n∫

Ω

∂tv
nwi +

∂vn

∂x1

∂wi
∂x1

+ 26
∂vn

∂x2

∂wi
∂x2
− 5

∂vn

∂x1

∂wi
∂x2
− 5

∂vn

∂x2

∂wi
∂x1

= −
∫

Ω

f
∂wi
∂x1

,

vn(0) = Pn(u0 − 1) :=

n∑
i=1

wi

∫
Ω

wi(u0 − 1).

(****)

Next, we can repeat the procedure from the lecture and let n → ∞ and find v solving
(***) (see the lecture).

Uniqueness: Assume that u and v are two solutions corresponding to the initial con-
ditions u0 and v0. If we denote w := u− w then it follows from (*) that

〈∂tw,ϕ〉V +

∫
Ω

∂w

∂x1

∂ϕ

∂x1
+ 26

∂w

∂x2

∂ϕ

∂x2
− 5

∂w

∂x1

∂ϕ

∂x2
− 5

∂w

∂x2

∂ϕ

∂x1
= 0

for almost all t ∈ (0, T ) and all ϕ ∈ V . In addition (u and v have the same trace) we
know w ∈ L2(0, T ;V ), so for almost all time we can set ϕ := w(t) to obtain

〈∂tw,w〉V +

∫
Ω

∣∣∣∣ ∂w∂x1

∣∣∣∣2 + 26

∣∣∣∣ ∂w∂x2

∣∣∣∣2 − 10
∂w

∂x1

∂w

∂x2
= 0

Hence, using (**) and the Poincaré inequality, we deduce

〈∂tw,w〉V + C1‖w‖2V ≤ 0. ((Un))

Hence, integration with respect to t leads directly to

‖w(t)‖22 ≤ ‖w0‖22 = ‖u0 − v0‖22,

so if u0 = v0 then w ≡ 0 and so the solution is unique.

Regularity

To prove it rigorously, we must start with the approximation (****). We multiply the
i-th equation by ∂ta

n
i and sum the result with respect to i = 1, . . . , n. (It is the same as

testing by ∂tv
n)

‖∂tvn‖22 +

∫
Ω

∂vn

∂x1
∂t
∂vn

∂x1
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∂vn
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∂vn
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∂t
∂vn

∂x2
− 5
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∂x2
∂t
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f∂t
∂vn

∂x1
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Next, we integrate by parts on the right hand side (we assume that f ∈ L2(0, T ;W 1,2(Ω)))
and use the symmetry on the left hand side to obtain

‖∂tvn‖22 +
1

2

d

dt

∫
Ω

∣∣∣∣∂vn∂x1

∣∣∣∣2 +26

∣∣∣∣∂vn∂x2

∣∣∣∣2−10
∂vn

∂x1

∂vn

∂x2
=

∫
Ω

∂f

∂x1
∂tv

n ≤ 1

2
‖f‖21,2 +

1

2
‖∂tvn‖22,

where we also used the Young inequality on the right hand side. Finally, we move the
last term totheleft hand side and integrate the result with respect to time over (τ, t) and
use also (**)∫ t

τ

‖∂tvn‖22 + C1‖∇vn(t)‖22

(**)

≤
∫ t

τ

‖∂tvn‖22 +

∫
Ω

∣∣∣∣∂vn(t)

∂x1

∣∣∣∣2 + 26

∣∣∣∣∂vn(t)

∂x2

∣∣∣∣2 − 10
∂vn(t)

∂x1

∂vn(t)

∂x2

≤
∫ t

τ

‖f‖21,2 +

∫
Ω

∣∣∣∣∂vn(τ)

∂x1

∣∣∣∣2 + 26

∣∣∣∣∂vn(τ)

∂x2

∣∣∣∣2 − 10
∂vn(τ)

∂x1

∂vn(τ)

∂x2

≤
∫ T

0

‖f‖21,2 + C‖vn(τ)‖21,2.

(A)

Next, we set t := T and integrate with respect to τ ∈ (0, δ) to get∫ δ

0

∫ T

τ

‖∂tvn(t)‖22 dt dτ ≤ δ
∫ T

0

‖f‖21,2 +

∫ δ

0

‖vn‖21,2 ≤ C.

The last inequality is just the apriori estimate. Since

δ

∫ T

δ

‖∂tvn‖22 ≤
∫ δ

0

∫ T

τ

‖∂tvn(t)‖22 dt dτ

it follows ∫ T

δ

‖∂tvn‖22 ≤
C

δ
.

This is the estimate which is independent of n and therefore holds also for the limit v.
Since ∂tu = ∂tv it gives the desired claim.

However, we cannot obtain it (in principle) up to the boundary. Indeed, if we set t := T
and τ := 0 in (A), we have (using that u0 = 0)∫ T

0

‖∂tvn‖22 ≤ C(1 + ‖vn(0)‖21,2) = C(1 + ‖Pn(v0)‖21,2)

= C(1 + ‖Pn(u0 − 1)‖21,2) = C(1 + ‖Pn(1)‖21,2)

However the right hand side explodes as n → ∞. It is caused by the fact that 1 /∈ V !!!
(it does not have the zero trace). It is also visible directly from the beginning, since we
prescribe incompatible boundary/initial data. We require u = 1 on ∂Ω for all times,
but initially (for time t = 0), we also require u ≡ 0, which is incompatible with desired
boundary conditions.
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Periodicity: First, we show that u0 7→ u(τ) is a contraction in L2(Ω). Let u0, v0 ∈
L2(Ω) be arbitrary. We denote u and v the weak solutions corresponding to u0, and v0

respectively and denote w := u − v. Then, we can use simple algebraic inequality and
((Un))

〈∂tw,w〉V + C1‖w‖22 ≤ 〈∂tw,w〉V + C1‖w‖2V ≤ 0. ((Un2))

Multiplication1by e2C1t and integration over (0, τ) we get

0 ≥ 2

∫ τ

0

〈∂tw,we2C1t〉V + 2C1

∫ τ

0

e2C1t‖w‖22 (1)

We evaluate (integrate by parts)

2

∫ τ

0

〈∂tw,we2C1t〉V = −2

∫ τ

0

〈w, ∂t(we2C1t)〉V + 2e2C1τ‖w(τ)‖22 − 2‖w(0)‖22

= −2

∫ τ

0

〈w, ∂twe2C1t〉V − 4C1

∫ τ

0

‖w‖22e2C1t + 2e2C1τ‖w(τ)‖22 − 2‖w(0)‖22

which directly implies (comparing both sides)

2

∫ τ

0

〈∂tw,we2C1t〉V = −2C1

∫ τ

0

‖w‖22e2C1t + 2e2C1τ‖w(τ)‖22 − 2‖w(0)‖22

which inserted into (1) gives

‖w(τ)‖22 ≤ e−2C1τ‖w(0)‖22. (B)

Since τ > 0, then e−2C1τ < 1 and we see that we obtained a contraction.

Consequently, using the Banach fixed point theorem, there exists unique u0 ∈ L2(Ω)
such that the weak solution satisfies u(τ) = u0. Finally, since f is τ periodic, we can
extend u periodically, i.e., we can set u(t+ τ) := u(t) for t ∈ (0, τ), and such extension
will solve the original problem on the interval (0, 2τ). Then we can proceed inductively
toextend the solution onto whole interval (0,∞).

1Formally we can rewrite the above inequality as

1

2

d

dt
‖w‖22 + C1‖w‖22 ≤ 0

which multiplied by 2e2C1t leads to
d

dt

(
e2C1t‖w‖22

)
≤ 0

and integration over (0, τ) leads to (B).


