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Abstract

R package mixAK originally implemented routines primarily for Bayesian estimation
of finite normal mixture models for possibly interval-censored data. The functionality of
the package was considerably enhanced by implementing methods for Bayesian estima-
tion of mixtures of multivariate generalized linear mixed models proposed in Komárek
and Komárková (2013). Among other things, this allows for a cluster analysis (classifica-
tion) based on multivariate continuous and discrete longitudinal data that arise whenever
multiple outcomes of a different nature are recorded in a longitudinal study. This package
also allows for a data-driven selection of a number of clusters as methods for selecting
a number of mixture components were implemented. A model and clustering method-
ology for multivariate continuous and discrete longitudinal data is overviewed. Further,
a step-by-step cluster analysis based jointly on three longitudinal variables of different
types (continuous, count, dichotomous) is given, which provides a user manual for using
the package for similar problems.
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Arnošt Komárek, Lenka Komárková (2014).
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1. Introduction

It is a common practice in longitudinal studies to gather multiple outcomes, both continuous
and discrete at each subject’s follow-up visit leading to multivariate longitudinal data. In
many research areas, the interest then lies in classifying (clustering) the subjects into groups
(clusters) on the basis of such multivariate longitudinal data. To be more specific, we first

introduce a basic notation. Suppose that ti =
(
ti,1, . . . , ti,ni

)>
, i = 1, . . . , N, are the visit

times of N subjects involved in a longitudinal study, where ni is the ith subject number
of visits which may differ between subjects, as well as the actual visit times. Further, let

Yi,r =
(
Yi,r,1, . . . , Yi,r,ni

)>
=
(
Yi,r,1(ti,1), . . . , Yi,r,ni(ti,ni)

)>
, r = 1, . . . , R, be the random

vectors representing the ith subject’s longitudinal measurements of the rth outcome being
recorded. The problem of clustering based on multivariate longitudinal data lies in using

complete observational vectors Yi =
(
Y>i,1, . . . ,Y

>
i,R

)>
together with ti, i = 1, . . . , N , and

possibly other exogenous covariates for classification of subjects into one of the K groups
where K is either known or unknown.

1.1. Model-based clustering

A model-based clustering became a popular method of classification in situations where it is
suitable to distinguish the K clusters by different probabilistic models (Bock 1996; Fraley and
Raftery 2002). Initially, we assume that K is known. As usual in this context, we introduce
the unobservable component allocations U1, . . . , UN ∈ {1, . . . ,K},

P(Ui = k; w) = wk, i = 1, . . . , N, k = 1, . . . ,K, (1)

where w =
(
w1, . . . , wK

)>
is a vector of unknown cluster proportions which are positive

and sum to unity. The meaning of the component allocations is so that Ui = k when the
ith subject’s observational random vector Yi was generated by the kth probabilistic model
represented by a model density fi,k(yi; ξk, ξ), where ξk is a vector of cluster-specific and
ξ a vector of common unknown parameters. The subscript i in fi,k, which is a conditional
density of Yi given Ui = k, points to the fact that fi,k may depend on subject specific factors
like the visit times ti or other covariates, and allows us to consider also regression models as
cluster characteristics. The marginal density of Yi, and hence also the likelihood contribution
of the ith subject, is then a mixture density

fi(yi; θ) =
K∑
k=1

wk fi,k(yi; ξk, ξ), (2)

where θ =
(
w>, ξ>1 , . . . , ξ

>
K , ξ

>)> denotes a vector of all unknown model parameters. Model-
based clustering is then based on the estimated values p̂i,k, i = 1, . . . , N, k = 1, . . . ,K, of the
individual component probabilities

pi,k = pi,k(θ) = P
(
Ui = k

∣∣Yi = yi; θ) =
wk fi,k(yi; ξk, ξ)

fi(yi; θ)
,

i = 1, . . . , N, k = 1, . . . ,K. (3)

A possible classification rule whose specific choice depends on a considered loss function from
a misclassification, is to assign subject i into the cluster g(i) such that p̂i,g(i) = maxk=1,...,K p̂i,k.
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1.2. R package mixAK

The R (R Core Team 2014) package mixAK (Komárek 2014), which is available from the Com-
prehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=mixAK,
started as a set of routines for Bayesian estimation of finite mixture models and subsequent
clustering based on possibly censored data. In the earlier version of the package, which is
described in Komárek (2009), only a simple case was covered where the densities fi,k in (2)
were all assumed to be multivariate normal with means and covariance matrices depending

on k only, i.e., fi,k = fk ≡ N (µk, Σk), ξk =
(
µ>k , vec

>(Σk)
)>

, k = 1, . . . ,K.

Following two methodological papers (Komárek, Hansen, Kuiper, van Buuren, and Lesaffre
2010; Komárek and Komárková 2013), the package has been considerably extended as follows.
It is assumed that the densities fi,k correspond to multivariate generalized linear mixed mod-
els, which leads to a density fi (Equation 2) being a mixture of multivariate generalized linear
mixed models. We describe this concept in more detail in Section 2. These extensions result
in two new principal capabilities of the package that are only rarely implemented elsewhere.
These are:

(i) joint analysis of multivariate longitudinal data, both continuous and discrete, by the
mean of an extension of a well understood generalized linear mixed model;

(ii) cluster analysis based on multivariate longitudinal data.

Even though we shall exemplify the whole methodology on problems from the area of lon-
gitudinal studies, all methods as well as the mixAK package have much broader area of
applications in fact covering data exhibiting all types of repeated measurements. For ex-
ample, they can be directly applied for the cluster analysis of the functional data, to name
one.

In this manuscript, we concentrate on introducing the new capabilities of the package mixAK
related to the cluster analysis of multivariate longitudinal data in particular. To this end,
we first finalize the introduction by a brief overview of other possible R implementations of
methods which might be considered for clustering based on longitudinal data. Nevertheless,
we also explain that most of these seeming competitors to our package can only be used
for clustering longitudinal data under restrictive assumptions not requested by our package.
Further, in Section 2, we first overview the particular form of the mixture model (2) that
underlies the methods implemented in the package mixAK and then discuss how to use the
model for clustering and also how to infer a number of mixture components. The main part
of the paper is given in Section 3, where we provide a detailed R example. It is a cluster
analysis based on a medical dataset involving three longitudinal outcomes of different natures
(continuous, count, dichotomous), which served as a motivating example for Komárek and
Komárková (2013). This paper finishes with conclusions and an outlook in Section 4.

1.3. Possible competitors

A variety of model-based clustering methods have been implemented and the methods are
available as contributed R packages. If the longitudinal data at hand are regularly sam-
pled (n1 = · · · = nN = n, t1 = · · · = tN = t), it is reasonable to assume that the vectors
Y1, . . . ,YN are not only independent but also identically distributed, i.e., i.i.d. Consequently,

http://CRAN.R-project.org/package=mixAK
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it is possible to consider the clustering methods based on finite mixtures of classical distri-
butions. Besides the earlier version of the mixAK package, these are available in the R pack-
ages mclust (Fraley, Raftery, Murphy, and Scrucca 2012) or teigen (Andrews and McNicholas
2013), for instance, where the mixture components are assumed to follow either a multivariate
normal or t-distributions. Mixtures with not only continuous but also discrete components
are implemented in the R packages mixdist (Macdonald and Du 2012) or Rmixmod (Au-
der, Lebret, Iovleff, and Langrognet 2014). Cluster analysis with high dimensional data can
also be performed by the means of the R package HDclassif (Bergé, Bouveyron, and Girard
2012). Nevertheless, for all of the above-mentioned approaches, the mixture parameters are
not allowed in a structural way to depend on exogenous factors like the visit time vectors
t1, . . . , tN , for example. This makes them impractical or inefficient for actual longitudinal
data. The possibility to model the dependence of mixture parameters on factors like the visit
times t1, . . . , tN and use the resulting model for clustering is provided by the R packages long-
clust (McNicholas, Jampani, and Subedi 2012) or MFDA (Zhong and Ma 2012). However,
only regularly sampled, and only continuous longitudinal data can be clustered using those
packages.

In biostatistical applications, as well as in other research areas, the longitudinal data are typi-
cally irregularly sampled, i.e., having in general different values of numbers of visits n1, . . . , nN
and/or different visit time vectors t1, . . . , tN . Model-based clustering methods for such data
suggested in the literature are then usually based on a mixture of suitable regression models.
A mixture of linear mixed models can base the clustering for continuous longitudinal data,
the approach being implemented in the R package mixtools (Benaglia, Chauveau, Hunter, and
Young 2009). Both continuous and discrete longitudinal data can be clustered via mixtures
of various types of mixed models using the R package lcmm (Proust-Lima, Philipps, Diakite,
and Liquet 2013). However, it is not possible to use jointly continuous and discrete outcomes
in one analysis. This rules out this package for clustering based on general multivariate lon-
gitudinal data, where different distributional assumptions, e.g., gaussian for elements of Yi,1,
and bernoulli for elements of Yi,2, i = 1, . . . , N , might be unavoidable. According to the best
of our knowledge, the only R package allowing for cluster analysis based on actual multivari-
ate longitudinal data of different nature (both continuous and discrete) is flexmix (Grün and
Leisch 2008). It implements a mixture of generalized linear models, possibly with repeated
measurements estimated using likelihood principles by the means of the EM algorithm. Nev-
ertheless, in the case of multivariate responses (i.e., R > 1 in our notation), the model used
by flexmix assumes that these are independent for r = 1, . . . , R which might be unrealistic.

The mixture of multivariate generalized linear mixed models provides some features, which
make the mixAK package different and to some extent more broadly applicable compared to
the above-mentioned implementations. Briefly, those features are such that they allow for (i)
irregularly sampled longitudinal data; (ii) multivariate longitudinal data with responses of
different nature (continuous and discrete); and (iii) multivariate responses are not necessarily
assumed to be independent for one subject.

2. Model and clustering procedure

Methodology which underlies the procedures for clustering based on multivariate longitudinal
data implemented in the package mixAK is described in detail in Komárek and Komárková
(2013) and its electronic supplement. Nevertheless, to make this paper relatively standalone
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and to introduce the necessary notation, we provide a brief overview in this section.

2.1. Multivariate mixture generalized linear mixed model

The mixture model (2) assumed by the package mixAK for the observable random vectors

Yi =
(
Yi,1,1, . . . , Yi,R,ni

)>
, i = 1, . . . , N , as a basis for the clustering procedure is determined

by the following assumptions.

(A1) For each i = 1, . . . , N , r = 1, . . . , R and each j = 1, . . . , ni, Yi,r,j follows a distribution
Dr from the exponential family with the dispersion parameter φr (fixed or unknown
depending on the considered exponential family) and the mean given by

h−1r
{
E(Yi,r,j

∣∣ Bi,r = bi,r; αr)
}

= x>i,r,jαr + z>i,r,jbi,r, (4)

where

(i) h−1r is a chosen link function;

(ii) x>i,r,j ∈ Rpr , z>i,r,j ∈ Rqr are vectors of known covariates (visit times ti,j and possibly

other factors) such that the matrix
(
Xr Zr

)
, where

Xr =

 x>1,r,1
...

x>N,r,nN

 , Zr =

 z>1,r,1
...

z>N,r,nN

 ,

is of a full column rank pr + qr;

(iii) αr ∈ Rpr is a vector of unknown parameters (fixed effects);

(iv) Bi,r ∈ Rqr is a random vector (random effects).

(A2) For each i = 1, . . . , N , the conditional distribution of the joint (over R markers) random

effects vector Bi =
(
B>i,1, . . . ,B

>
i,R

)> ∈ Rq, q =
∑R

r=1 qr, given Ui = k (given the
i subject belongs to the kth group) is a (multivariate) normal with unknown mean
µk ∈ Rq and unknown q × q positive definite covariance matrix Dk, k = 1, . . . ,K, i.e.,

Bi

∣∣Ui = k ∼ Nq
(
µk, Dk

)
, k = 1, . . . ,K. (5)

(A3) For each i = 1, . . . , N , the random variables Yi,1,1, . . . , Yi,R,ni are conditionally indepen-
dent given the random effects vector Bi.

(A4) Random vectors Y1, . . . ,YN are independent.

(A5) Random effects vectors B1, . . . ,BN are independent.

In summary, the cluster-specific model parameters ξ1, . . . , ξK are composed of the means and
covariance matrices of the conditional distributions of random effects, i.e.,

ξk =
(
µ>k , vec

>(Dk)
)>
, k = 1, . . . ,K.

The model parameters common to all clusters are the fixed effects and the dispersion param-
eters, i.e.,

ξ =
(
α>1 , . . . ,α

>
R, φ1, . . . , φR

)>
. (6)
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The cluster specific model density fi,k, i = 1, . . . , N , k = 1, . . . ,K, is then

fi,k(yi; ξk, ξ) =

∫
Rq

{ R∏
r=1

ni∏
j=1

fDr(yi,r,j ; αr, φr, bi,r)
}
ϕ(bi; µk, Dk) dbi, (7)

where fDr is the exponential family density following from the assumption (A1). Further,
ϕ(·; µk,Dk) is a density of the (multivariate) normal distribution with a mean µk and a co-
variance matrix Dk, k = 1, . . . ,K, following from assumption (A2).

With R = 1, the model density fi,k in (7) is the ith subject’s likelihood contribution as
if the generalized linear mixed model (GLMM) with N (µk, Dk) distributed random effects
is assumed for the observed data. With R > 1, a multivariate generalized linear mixed
model (MGLMM) is obtained where the dependence among the random vectors Yi,1, . . . ,Yi,R

representing different markers is induced by non-diagonal covariance matrix Dk of the random
effects vector Bi in general. Finally, substituting fi,k from (7) into (2) lead to the ith subject’s
likelihood contribution

fi(yi; θ) =

K∑
k=1

wk

∫
Rq

{ R∏
r=1

ni∏
j=1

fDr(yi,r,j ; αr, φr, bi,r)
}
ϕ(bi; µk, Dk) dbi, (8)

=

∫
Rq

{ R∏
r=1

ni∏
j=1

fDr(yi,r,j ; αr, φr, bi,r)
}{ K∑

k=1

wk ϕ(bi; µk, Dk)
}

dbi. (9)

It follows from the expression above that the model assumed for the observable random
vectors Y1, . . . ,YN can be interpreted either as a mixture of multivariate generalized linear
mixed models with normally distributed random effects (Equation 8), or as a multivariate
generalized linear mixed model with a normal mixture in the random effects distribution
(Equation 9), where the overall mean and the overall covariance matrix of the random effects
Bi, i = 1, . . . , N , are given by

β = E
(
Bi; θ

)
=

K∑
k=1

wkµk, (10)

D = VAR
(
Bi; θ

)
=

K∑
k=1

wk

{
Dk +

(
µk −

K∑
j=1

wjµj
)(
µk −

K∑
j=1

wjµj
)>}

. (11)

Consequently, we call our model a multivariate mixture generalized linear mixed model
(MMGLMM). Following the above considerations, the model likelihood and its observed data
deviance are

L(θ) =
N∏
i=1

fi(yi; θ), D(θ) = −2 log
{
L(θ)

}
, (12)

respectively.

Finally, we point out that in the package mixAK, the following exponential distributions Dr
and the link functions h−1r from assumption (A1) are implemented: (a) Gaussian with the
identity link, i.e., a linear mixed model for the rth marker where the dispersion parameter φr
is the unknown residual variance; (b) Poisson with the log link where φr = 1; (c) Bernoulli
with the logit link where again φr = 1.
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2.2. Bayesian inference

For largely computational reasons, the Bayesian approach based on the output from the
Markov chain Monte Carlo (MCMC) simulation is exploited to infer the unknown model pa-
rameter vector θ and to perform the clustering. In a sequel, let p(·) and p

(
·
∣∣ ·) be generic

symbols for (conditional) distributions and densities. As is usual in Bayesian statistics, the
latent quantities (random effects Bi and component allocations Ui, i = 1, . . . , N) are consid-
ered as additional model parameters with the joint prior distribution for all model parameters
specified hierarchically following the structure of the model outlined in Sections 1.1 and 2.1
as

p(θ, b1, . . . ,bN , u1, . . . , uN ) =

N∏
i=1

{
p
(
bi
∣∣ui, θ) p(ui ∣∣θ)} p(θ)

=
N∏
i=1

{
ϕ(bi; µui , Dui)wui

}
p(θ).

The prior distribution p(θ) of the primary model parameters is then specified to be weakly
informative. Finally, the MCMC methods are used to generate a sample

SM =

{(
θ(m), b

(m)
1 , . . . ,b

(m)
N , u

(m)
1 , . . . , u

(m)
N

)
: m = 1, . . . ,M

}
(13)

from the joint posterior distribution p
(
θ, b1, . . . ,bN , u1, . . . , uN

∣∣y) whose margin p
(
θ
∣∣y) is

the posterior distribution of interest, i.e., p
(
θ
∣∣y) ∝ L(θ) p(θ). With respect to the intended

clustering, a well-known problem arising from the invariance of the likelihood L(θ) under
permutation of the component labels is resolved using the relabeling algorithm of Stephens
(2000) adapted for use in a context of our model. Detailed description of the assumed prior
distribution and the MCMC algorithm are given in Komárek and Komárková (2013, Section
2.2, Appendices A, B).

2.3. Clustering procedure

It is explained in Section 1.1 that the model-based clustering is based on the estimated values
of the individual component probabilities (3). Within the Bayesian framework, the natural
estimates of the values pi,k, i = 1, . . . , N , k = 1, . . . ,K, are their posterior means, MCMC
estimates of which are easily obtainable from the generated posterior sample SM , i.e.,

p̂i,k = E
{
pi,k(θ)

∣∣Y = y
}

= P
(
Ui = k

∣∣Y = y
)

=

∫
pi,k(θ) p

(
θ
∣∣y) dθ ≈ 1

M

M∑
m=1

pi,k
(
θ(m)

)
. (14)

Nevertheless, other characteristics of the posterior distributions of the component proba-
bilities, e.g., the posterior medians, can also be used. On top of that, uncertainty in the
classification can be to some extent taken into account by exploring either the full posterior
distribution of the component probabilities, or by calculating their credible intervals. We
illustrate this in Section 3.7.
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2.4. Selecting a number of mixture components

Selecting a number of mixture components, that is, selecting a number of clusters if this is
not known in advance coincides with the problem of model selection. In the area of mixture
models, models with different numbers of components are usually fitted and then compared
by a suitable characteristic of model complexity and model fit. Within the mixAK package,
two approaches can easily be exploited that we briefly describe in the rest of this section.

Penalized expected deviance

The most commonly used Bayesian characteristic of model complexity and model fit is prob-
ably the Deviance Information Criterion (DIC, Spiegelhalter, Best, Carlin, and van der Linde
2002). Nevertheless, as shown by Celeux, Forbes, Robert, and Titterington (2006), its use in
mixture models is controversial. An alternative measure, the Penalized Expected Deviance
(PED), derived from cross-validation arguments, was suggested by Plummer (2008). It does
not suffer from the controversies described by Celeux et al. (2006) and can be used even in
the context of the mixture models. Also the mixAK package exploits the PED for model
comparison. The Penalized Expected Deviance whose lower value indicates a better model is
defined as

PED = E
{
D(θ)

∣∣Y = y
}

+ popt. (15)

In Equation (15), D(θ) is the observed data deviance (Equation 12), and popt is the penalty
term called optimism whose value can be estimated by the use of importance sampling and
the use of two parallel chains.

Posterior distribution of the deviances

An alternative procedure of the model selection has been suggested by Aitkin, Liu, and
Chadwick (2009), later described also in Aitkin (2010, Chapters 7 and 8). They propose
basing the model comparison on the full posterior distribution of the deviances. They argue
that the model comparison based on one-number criteria (like DIC but also the previously-
discussed PED) ignores the uncertainty in the comparison which increases with the increasing
number of the model parameters. On the other hand, this uncertainty is taken into account
when using the whole posterior distribution of the deviance for the comparison.

Suppose that we want to compare model 1 (with K = K1) and model 2 (with K = K2 > K1)
having the deviances DK1(θ) and DK2(θ), respectively. The posterior probability

PK2,K1(y) = P
{
DK2(θ)−DK1(θ) < 0

∣∣Y = y
}

(16)

now quantifies our certainty on whether model 2 is better than model 1. The penalization
for the increasing complexity of the model is included implicitly in this procedure as models
with more parameters lead to more diffuse posterior distribution of the deviance and hence
decrease in PK2,K1(y). Aitkin et al. (2009, Section 4) further suggest calculating the posterior
probability

P ∗K2,K1
(y) = P

{
DK2(θ)−DK1(θ) < −2 log(9)

.
= −4.39

∣∣Y = y
}
. (17)

They argue that if this probability is high (0.9 or more), we have quite strong evidence in
favor of a model with K = K2 over model with K = K1.
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Finally, Aitkin (2010) suggests performing an overall comparison of the posterior distributions
of deviances by plotting the posterior cumulative distribution functions (cdf’s)

FDj

(
d
∣∣Y = y

)
= P

{
Dj(θ) ≤ d

∣∣Y = y
}
, j = 1, 2. (18)

of the deviances. We illustrate this in Section 3.8.

3. Example using the package mixAK

The aim of this section is to provide a detailed step-by-step R analysis of a particular dataset,
to highlight its most important features and to show how to extract the most important
results. Even though we comment the results shown in this manuscript in most cases as well,
it goes beyond the scope of this paper to provide them in full context or to explain their
meaning in detail. All this is given in an accompanying methodological paper (Komárek and
Komárková 2013) where the same dataset is analyzed. This section can also be considered
as a user manual which allows the readers to run their own similar analyses by only a mild
modification of the example code.

3.1. Data

Longitudinal data clustering capabilities of the R package mixAK will be illustrated on the
analysis of a subset of the data from a Mayo Clinic trial on 312 patients with primary biliary
cirrhosis (PBC) conducted in 1974–1984 (Dickson, Grambsch, Fleming, Fisher, and Langwor-
thy 1989). The primary data are available at http://lib.stat.cmu.edu/datasets/pbcseq.
In this paper, only N = 260 subjects known to be alive at 910 days of follow-up, and only
the longitudinal measurements by this point will be considered. The corresponding data are
available as a data.frame PBC910 inside the mixAK package. Upon loading the package and
the data, we print the columns important for our analysis and few tail rows to describe the
data structure.

R> library("mixAK")

R> data("PBC910", package = "mixAK")

R> tail(PBC910)[, c(1, 2, 3, 6:9)]

id day month lbili platelet spiders jspiders

913 311 187 6.14 0.405 382 NA NA

914 311 397 13.04 0.642 408 0 0.266

915 312 0 0.00 1.856 200 1 0.886

916 312 206 6.77 1.705 189 0 0.188

917 312 390 12.81 2.001 148 0 0.173

918 312 775 25.46 2.791 138 1 0.736

It is a longitudinal dataset with one row per visit. There are 1 to 5 visits per subject (iden-
tified by column id) performed at time of day days (month months) of follow-up. At each
visit, measurements of three markers (R = 3) are recorded: continuous logarithmic bilirubin
(lbili), discrete platelet count (platelet) and dichotomous indication of blood vessel mal-
formations (spiders). The column jspiders is a jittered version of spiders which we shall
use for drawing of some descriptive plots.

http://lib.stat.cmu.edu/datasets/pbcseq
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As it is exemplified on data for subject id = 311, the value of some of the markers considered
might be missing at some visits. In this case, the value of the dichotomous spiders is
not available at the visit performed at 187 days of follow-up. Still, the non-missing values of
variables lbili and platelet from the visit at 187 days shall contribute to the likelihood, the
estimation and clustering procedure. We take missingness of any of the outcome variables into
account by modifying the expressions for the ith subject likelihood contributions (Equations 8
and 9) such that for given r = 1, . . . , R, the product over j takes only the available outcome
values into account. Note that this “all available cases” approach is valid as soon as the
missingness mechanism can be assumed to be ignorable: data being missing at random or
completely at random in the classical taxonomy of Rubin (1976).

In the rest of this section, the random vectors Yi,1, Yi,2, Yi,3, i = 1, . . . , N , intended for the
cluster analysis, shall correspond to the values of lbili, platelet, spiders, respectively.
The column month shall lead to the time vectors t1, . . . , tN . No other covariates will be used
in the underlying model.

3.2. Basic data exploration

Basic exploration of longitudinal data may consist of drawing longitudinal profiles observed,
possibly highlighting the profiles of selected subjects. For this purpose, package mixAK offers
two functions:

� getProfiles() which creates a list of data.frames (one data.frame per subject) with
selected variables;

� plotProfiles() which creates a spaghetti graph with observed longitudinal profiles
per subject.

As an illustration, we extract the longitudinal profiles of variables lbili, platelet, spiders,
jspiders and then draw the longitudinal profiles of lbili while highlighting the first and
the last subject in the dataset (id 2 and 312), see the upper panel of Figure 1.

R> ip <- getProfiles(t = "month",

+ y = c("lbili", "platelet", "spiders", "jspiders"),

+ id = "id", data = PBC910)

R> plotProfiles(ip = ip, data = PBC910, var = "lbili", tvar = "month",

+ main = "Log(bilirubin)", highlight = c(1, length(ip)),

+ xlab = "Time (months)", ylab = "Log(bilirubin)")

The remaining panels of Figure 1 are drawn analogously while using arguments trans = log

(lower left panel showing the longitudinal profiles of the log-transformed response platelet)
and lines = FALSE, points = TRUE (lower right panel showing jittered values of the di-
chotomous response spiders) of the function plotProfiles(). The reason for drawing the
logarithmic transformation of the variable platelet is that a log link will be proposed in
Section 3.3 for this response and the created plot then better helps to choose a mean struc-
ture of the related GLMM. Further, with a dichotomous longitudinal response, it is almost
impossible to draw a fully informative plot of observed data and according to the best of our
knowledge, no standard way of doing that in the literature exists. The lower right-hand panel
of Figure 1 with vertically jittered values of the response spiders is then a possible option
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which at least allows us into some extent to compare visually the proportions of zeros and
ones at each occasion. An alternative could be a suitably adapted spine plot but we do not
pursue this option here.

The full code to draw Figure 1 is the following.

R> iShow <- c(1, length(ip)) ### indeces of subjects to be highlighted

R> layout(autolayout(3))

R> plotProfiles(ip = ip, data = PBC910, var = "lbili", tvar = "month",

+ auto.layout = FALSE, main = "Log(bilirubin)",

+ xlab = "Time (months)", ylab = "Log(bilirubin)",
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Blood vessel malform.

Figure 1: Observed (transformed) longitudinal profiles of considered markers, red lines: pro-
files of two selected subjects (id 2 and 312).
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+ highlight = iShow)

R> plotProfiles(ip = ip, data = PBC910, var = "platelet", tvar = "month",

+ auto.layout = FALSE, main = "Log(platelet)",

+ trans = log, xlab = "Time (months)", ylab = "Log(platelet)",

+ highlight = iShow)

R> plotProfiles(ip = ip, data = PBC910, var = "jspiders", tvar = "month",

+ lines = FALSE, points = TRUE,

+ auto.layout = FALSE, main = "Blood vessel malform.",

+ xlab = "Time (months)", ylab = "Blood vessel malform. (jittered)",

+ highlight = iShow)

3.3. Model

Being partially motivated by Figure 1, by the nature of the considered longitudinal markers
and also by other considerations, the following generalized linear mixed models in assumption
(A1) of the MMGLMM shall be exploited for the analysis:

(i) the continuous nature of the variable lbili suggests considering a Gaussian GLMM,
i.e., a linear mixed model, for the random vectors Yi,1, i = 1, . . . , N . Further, Figure 1
together with additional exploration of individual longitudinal profiles (not shown) sug-
gest modeling the evolution of each subject by a line over time where the parameters
of the line may differ across subjects. This leads to the following random intercept and
random slope model for the means of the elements of the response vectors:

E
(
Yi,1,j

∣∣Bi,1 = bi,1
)

= bi,1,1 + bi,1,2ti,j , bi,1 =
(
bi,1,1, bi,1,2

)>
,

i = 1, . . . , N , j = 1, . . . , ni. Additional refinement of the model, for instance towards
capturing possibly non-linear evolution of the outcome over time, is of course possible.
Nevertheless, this goes beyond the scope of this software related paper.

In a general notation of Section 2.1, there are no fixed effects, and the random effects

covariate vector zi,1,j equals
(
1, ti,j

)>
. The dispersion parameter φ1 is an unknown

residual variance of the underlying linear mixed model;

(ii) the count nature of the variable platelet leads us to consider a Poisson GLMM for
the random vectors Yi,2, i = 1, . . . , N . Analogously to the previous case of the variable
lbili, exploration of individual longitudinal profiles (Figure 1 and others) suggests con-
sidering subject specific lines over time for logarithmically linked means of the elements
of the response vectors:

log
{
E
(
Yi,2,j

∣∣Bi,2 = bi,2
)}

= bi,2,1 + bi,2,2ti,j , bi,2 =
(
bi,2,1, bi,2,2

)>
,

i = 1, . . . , N , j = 1, . . . , ni. Analogously to the model for the variable lbili, there

are no fixed effects, and the random effects covariate vector zi,2,j equals
(
1, ti,j

)>
. The

dispersion parameter φ2 is now constantly equal to 1;

(iii) the dichotomous nature of the variable spiders dictates to use a Bernoulli GLMM for
which the logit link is a classical choice. The assumed mean structure of the model is
the following:

logit
{
E
(
Yi,3,j

∣∣Bi,3 = bi,3; α3

)}
= bi,3 + α3 ti,j , (19)
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i = 1, . . . , N , j = 1, . . . , ni. In this case, the fixed effects covariate vector xi,3,j =
(
ti,j
)
,

and the random effects covariate vector zi,3,j =
(
1
)
.

Inclusion of the random intercept in the model above is motivated by observing that
subjects differ in predisposition towards development of the blood vessel malformations.
Due to the fact that we cannot rule out change of this predisposition over time, an
additional linear term is included in the model. Nevertheless, due to the relatively
low number of repeated measurement per subject, it is difficult to effectively estimate
a model with a dichotomous outcome allowing also for subject-specific slopes, which are
then included only as a fixed effect.

In summary, the model parameters (6) common to all clusters are the slope α3 from the logit
model for the variable spiders, and the dispersion parameter φ1 from the linear mixed model

for the variable lbili, i.e., ξ =
(
α3, φ1

)>
. The joint random effects vectors B1, . . . ,BN are

five-dimensional, Bi =
(
Bi,1,1, Bi,1,2, Bi,2,1, Bi,2,2, Bi,3

)>
, i = 1, . . . , N , with the overall mean

β =
(
β1, β2, β3, β4, β5

)>
, and the overall covariance matrix D =

(
dl,m

)
l,m=1....,5

. Initially,
a model with K = 2 mixture components will be fitted.

3.4. Posterior Markov chain Monte Carlo simulation

Two functions from the mixAK package are related to the generation of a posterior sample
(13) needed for the inference and the clustering. They include:

� GLMM_MCMC() is the main function which runs the MCMC algorithm. Internally, most
of the calculation is provided by a compiled C++ code to fasten the computational
time. With default values of the input arguments, the function generates two MCMC
samples started from two sets of initial values which is primarily needed to calculate
the penalized expected deviance (PED) useful for model comparison as explained in
Section 2.4. The function returns a list class of which is set to GLMM_MCMClist. It
contains some information concerning the model and two objects of class GLMM_MCMC

holding the two sampled chains, initial values used to start the MCMC, specific choices
of hyperparameters of the prior distribution and basic posterior summary statistics.
Several methods which we shall introduce subsequently are available for objects classes
GLMM_MCMClist and GLMM_MCMC to handle and visualize the results;

� NMixRelabel() is a generic function with methods for objects of classes GLMM_MCMClist
and GLMM_MCMC which applies the relabeling algorithm and returns appropriately mod-
ified input object. Analogously to the GLMM_MCMC() function, the main calculation is
internally conducted using the compiled C++ code.

As an illustration, we run the MCMC algorithm for (100 × 10) burn-in and (1 000 × 10)
subsequent iterations with 1:10 thinning to get two samples of length M = 1 000 from the
joint posterior distribution obtained by starting the MCMC from two different sets of initial
values. Note that a longer MCMC is usually needed to get reliable results but we keep
it shorter here to make it quickly reproducible. By default, the two chains are generated
sequentially. Nevertheless, on multicore processors this task might be parallelized using the
tools provided by the standard R package parallel by setting the parallel argument to TRUE.
Indicated computational time was achieved on Intel Core i7 2.7 GHz CPU with 2 × 8 GB
RAM running on a Linux Debian OS.
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R> set.seed(20042007)

R> mod <- GLMM_MCMC(y = PBC910[, c("lbili", "platelet", "spiders")],

+ dist = c("gaussian", "poisson(log)", "binomial(logit)"),

+ id = PBC910[, "id"],

+ x = list(lbili = "empty",

+ platelet = "empty",

+ spiders = PBC910[, "month"]),

+ z = list(lbili = PBC910[, "month"],

+ platelet = PBC910[, "month"],

+ spiders = "empty"),

+ random.intercept = rep(TRUE, 3),

+ prior.b = list(Kmax = 2),

+ nMCMC = c(burn = 100, keep = 1000, thin = 10, info = 100),

+ parallel = FALSE)

Chain number 1

==============

MCMC sampling started on Fri Sep 5 13:29:32 2014.

Burn-in iteration 100

Iteration 1100

MCMC sampling finished on Fri Sep 5 13:30:00 2014.

Chain number 2

==============

MCMC sampling started on Fri Sep 5 13:30:00 2014.

Burn-in iteration 100

Iteration 1100

MCMC sampling finished on Fri Sep 5 13:30:28 2014.

Computation of penalized expected deviance started

on Fri Sep 5 13:30:28 2014.

Computation of penalized expected deviance finished

on Fri Sep 5 13:31:08 2014.

The meaning of the most important arguments of the GLMM_MCMC function is briefly the fol-
lowing. The argument y is a data.frame with the observed values of the longitudinal markers
in its columns. The mean structure of the GLMM’s from assumption (A1) is indicated by
arguments x (a list of vectors/matrices/data frames of the fixed effects covariates except the
intercept term), z (a list of vectors/matrices/data frames of the random effects covariates
except the intercept term) and a logical argument random.intercept. Note that we assume
a hierarchically centered GLMM (Gelfand, Sahu, and Carlin 1995) where the random effects
have in general non-zero mean (their overall mean β is given by Equation 10). Hence, the
marker specific parts of the lists in x and z arguments may not contain the same variables.
Otherwise, the model parameters would become unidentifiable as β would be estimated twice,
once through the mixture means µ1, . . . ,µK and once through the corresponding fixed effects.
The keyword "empty" is used to indicate that there are no fixed or random effects, respectively
in a model for a specific marker. Purely to simplify the programming work, the GLMM_MCMC
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function is coded such that the intercept is always included in the model and the fact whether
it is random or fixed is indicated by argument random.intercept. Assumed distributions
and the link functions for each marker are indicated by the argument dist.

The only obligatory part of the prior distribution which has to be specified by the user is
the number of mixture components (clusters) given as a Kmax element of the list in the
prior.b argument. All other values of prior hyperparameters are selected automatically to
achieve a weakly informative prior distribution using the guidelines described in Komárek
and Komárková (2013, Appendix A). The function GLMM_MCMC also automatically generates
the reasonable initial values to start the MCMC simulation. User-defined prior hyperpa-
rameters and initial values can be supplied by using the appropriate values of the argu-
ments prior.alpha, prior.b, prior.eps, and init.alpha, init2.alpha, init.b, init2.b,
init.eps, init2.eps, respectively.

Before we proceed, we point out that the object mod returned by the function GLMM_MCMC

is a list with two main elements mod[[1]] and mod[[2]] holding the two sampled chains,
their initial values, selected posterior summary statistics based on these chains and some
additional quantities derived from both sampled chains. The class of the mod object is set
to GLMM_MCMClist, class of the main elements mod[[1]] and mod[[2]] is GLMM_MCMC. Basic
information concerning the structure of the object mod will be given in the subsequent sections.
More details and a description of how to change the default values of the prior hyperparameters
and the initial values to start the MCMC simulation are given in Appendix A.

As it is mentioned in Section 2.2, a problem arising from the invariance of the model likeli-
hood under permutation of the component labels must be resolved and one possibility is to
apply a suitable relabeling algorithm. When running the GLMM_MCMC function, only a simple
relabeling based on the ordering of the first margins of the mixture means was applied. The
resulting relabeling is primarily reflected in the elements order_b and rank_b which are also
present in the mod[[1]] and mod[[2]] objects.

R> mod[[1]]$order_b[1:3,] R> mod[[1]]$rank_b[1:3,]

order1 order2 rank1 rank2

[1,] 1 2 [1,] 1 2

[2,] 1 2 [2,] 1 2

[3,] 1 2 [3,] 1 2

Both order_b and rank_b are M ×K matrices having the following meaning. Let om,k, be
the elements of the matrix order_b, and rm,k m = 1, . . . ,M, k = 1, . . . ,K, the elements of
the matrix rank_b. After relabeling, component number κ, κ ∈ {1, . . . ,K} at iteration m
is given by the om,κth component in the original sample, or vice versa, component number ι
in the original sample equals to the rm,ιth component in the relabeled sample. Nevertheless,
as illustrated in Stephens (2000, Section 3.1), the relabeling applied above is based in fact
on imposing an artificial identifiability constraint and is not always satisfactory. This is
especially in situations when the chosen identifiability constraint does not separate the mixture
components well. Due to this reason, Stephens (2000) suggested a relabeling algorithm which
arise from attempting to minimize the posterior expected loss under a class of loss functions
suitable for assessment of a clustering procedure. To apply his algorithm on our posterior
samples, we run the NMixRelabel function (it is done separately for each chain) with its type
argument set to "stephens":
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R> mod <- NMixRelabel(mod, type = "stephens", keep.comp.prob = TRUE)

Re-labelling chain number 1

===========================

MCMC Iteration (simple re-labelling) 1000

Stephens' re-labelling iteration (number of labelling changes): 1 (0)

Re-labelling chain number 2

===========================

MCMC Iteration (simple re-labelling) 1000

Stephens' re-labelling iteration (number of labelling changes): 1 (0)

Objects mod[[1]] and mod[[2]] have the same structure as before with the exception that
all results which are not invariant towards label switching were (re-)calculated to reflect the
new labeling of the mixture components. These are the elements:

� order_b,

� rank_b,

and also not yet mentioned elements:

� poster.mean.w_b,

� poster.mean.mu_b,

� poster.mean.Sigma_b,

� poster.mean.Q_b,

� poster.mean.Li_b,

� poster.comp.prob,

� poster.comp.prob_u,

� poster.comp.prob_b,

� comp.prob,

� comp.prob_b,

� quant.comp.prob,

� quant.comp.prob_b.

Finally, by setting keep.comp.prob = TRUE in the NMixRelabel call, we additionally gen-
erated the posterior samples pi,k

(
θ(m)

)
, i = 1, . . . , N , k = 1, . . . ,K, m = 1, . . . ,M (Equa-

tion 14), that subject i belongs to the kth group (where k refers to a new labeling of the
components) which will be used in Section 3.7 for the purposes of clustering.

3.5. Posterior samples and basic convergence diagnostics

Posterior samples of the primary model parameters, random hyperparameters and some ad-
ditional derived quantities are kept in the mod[[1]] and mod[[2]] objects as their matrix
or vector elements. The most important ones include: Deviance (sampled model deviance
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L(θ), Equation 12), alpha (sampled fixed effects α1, . . . ,αR), sigma_eps (sampled square
roots of dispersion parameters φ1, . . . , φR), mixture_b (sampled overall random effects means
β, Equation 10, and standard deviations and correlations derived from the overall random
effects covariance matrix D, Equation 11). As illustration, we print the first ten sampled
values of the model deviance L(θ) from the first chain:

R> print(mod[[1]]$Deviance[1:10], digits = 9)

[1] 14086.4438 14095.8671 14113.7103 14097.6683 14109.1802 14102.2894

[7] 14110.1587 14098.9003 14109.3774 14096.8390

Classical tools for convergence diagnostics as implemented, e.g., in the R package coda (Plum-
mer, Best, Cowles, and Vines 2006) can be used to evaluate the convergence of the performed
MCMC simulation. As an illustration, we use the coda package routine autocorr() to cal-
culate estimated autocorrelations (in the first and the second chain) in our Markov chain of
the model deviances (the output was edited into two columns):

R> library("coda")

R> DevChains <- mcmc.list(mcmc(mod[[1]]$Deviance), mcmc(mod[[2]]$Deviance))

R> autocorr(DevChains)

[[1]] [[2]]

, , 1 , , 1

Lag 0 1.00000 Lag 0 1.00000

Lag 1 0.24155 Lag 1 0.21846

Lag 5 0.10663 Lag 5 0.12404

Lag 10 0.06345 Lag 10 0.03833

Lag 50 0.00043 Lag 50 -0.01368

Two extra routines are available within the mixAK package to access the posterior samples
and produce basic diagnostics plots. These are:

� NMixChainComp() is a generic function with a method for objects of class GLMM_MCMC

which extracts the posterior samples of the mixture parameters from the resulting ob-
ject: weights w, means µ1, . . . ,µK , covariance matrices D1, . . . ,DK or their derivatives
(standard deviations and correlations based on D1, . . . ,DK). It has a logical argument
relabel that determines whether the original sample is required (relabel = FALSE) or
a relabeled sample (with default relabel = TRUE) as calculated by the NMixRelabel

function in Section 3.4;

� tracePlots() is again a generic function with methods for objects of classes GLMM_MCMC
and GLMM_MCMClist which produces traceplots (parallel if applied to the object of class
GLMM_MCMClist) of selected class of model parameters. In case that traceplots of mixture
related parameters are required, a logical argument relabel with the same meaning as
in the case of the NMixChainComp() function determines whether the original or the
relabeled sample is to be plotted.
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We first illustrate the use of the NMixChainComp() function and extract from the object
mod[[1]] (the first sampled chain) the relabeled sample of the mixture means µ1, . . . ,µK
and then print the first three sampled values.

R> muSamp1 <- NMixChainComp(mod[[1]], relabel = TRUE, param = "mu_b")

R> print(muSamp1[1:3,])

mu1.1 mu1.2 mu1.3 mu1.4 mu1.5 mu2.1 mu2.2 mu2.3 mu2.4

[1,] -0.258 0.00645 5.59 -0.00690 -3.82 1.240 0.00322 5.43 -0.00729

[2,] -0.257 0.00345 5.59 -0.00534 -4.41 0.951 0.01426 5.39 -0.00277

[3,] -0.323 0.00625 5.61 -0.00583 -3.83 0.838 0.01144 5.41 -0.00315

mu2.5

[1,] -1.101

[2,] -1.069

[3,] -0.563

The first five columns of a matrix muSamp1 contain the sampled values of µ1, the remaining
five columns contain the sampled values of µ2. By changing the value of the argument param,
sampled values of other mixture parameters are provided. In particular, param values of
"w_b", "var_b", "sd_b", "cor_b", provide the sampled values mixture weights, variances
(diagonal elements of matrices D1, . . . ,DK), their square roots (standard deviations), and
correlation coefficients derived from matrices D1, . . . ,DK , respectively. Further, the param

values of "Sigma_b", "Q_b", "Li_b" provide the sampled values of the lower triangles of
the mixture covariance matrices D1, . . . ,DK , their inversions, and Cholesky factors of their
inversions, respectively. More detailed description of the storage of the posterior samples is
given in Appendix B.

Traceplots are a useful basic tool for exploring the behavior of the sampled Markov chains.
When two parallel chains are generated, it is useful to draw both chains in two different colors
into one plot as it is done by the mixAK function tracePlots. As illustration, we draw the
traceplots of the two parallel chains of the model deviance D(θ), see Figure 2.

R> tracePlots(mod, param = "Deviance")

By changing the argument param, traceplots of other model parameters are drawn. In par-
ticular, by setting the argument param to "alpha" and "sigma_eps", respectively, trace-
plots of the fixed effects vector α1, . . . ,αR and the square roots of the dispersion parameters
φ1, . . . , φR, respectively, are drawn. Likewise, the param argument values of "Eb", "SDb" and
"Corb", respectively, lead to traceplots for the overall means β (Equation 10) of the random
effects, and the standard deviations and correlation coefficients, respectively, derived from the
overall covariance matrix D (Equation 11).

Additionally, traceplots of sampled (as such before applying any relabeling algorithm) mixture
weights w1, . . . , wK , components of the mixture means µ1, . . . ,µK and standard deviations
from the mixture covariance matrices D1, . . . ,DK , respectively, can be drawn by setting the
param argument of the tracePlots function to "w_b", "mu_b", and "sd_b", respectively.
Traceplots of these quantities after current relabeling (reflected by the order_b and rank_b

components of the objects mod[[1]] and mod[[2]], respectively) are drawn by setting the
optional tracePlots argument relabel to TRUE (output not shown).
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R> tracePlots(mod, param = "w_b", relabel = TRUE)

R> tracePlots(mod, param = "mu_b", relabel = TRUE)

R> tracePlots(mod, param = "sd_b", relabel = TRUE)

Finally, we can draw the traceplots of the hyperparameters γb,1, . . . , γb,5, and γφ,1, respec-
tively, if we set the tracePlots argument param to "gammaInv_b" and "gammaInv_eps",
respectively. Finally, when the first argument of the tracePlots function is changed to
mod[[1]] or mod[[2]], respectively, only the single traceplots of the first and the second
chain, respectively, are drawn.

3.6. Posterior summary statistics

To summarize the estimated models, we usually calculate the posterior summary statistics
and credible intervals for important model parameters. In the context of the MMGLMM,
these include: the fixed effects α1, . . . ,αR and the dispersion parameters φ1, . . . , φR, and the
overall mean β (Equation 10) and the overall covariance matrix D (Equation 11) of the random
effects. Furthermore, the posterior summary statistics of the observed data deviance D(θ)
(Equation 12) is usually reported to provide a basic model fit characteristic. Note that up
to now mentioned quantities are invariant towards label switching and hence their posterior
summary statistics might be calculated even without performing any relabeling. Having
the subsequent clustering in mind, posterior summary statistics for the mixture parameters
(weights w1, . . . , wK , means µ1, . . . ,µK , covariance matrices D1, . . . ,DK) are of additional
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Figure 2: Traceplots of the two parallel chains of the model deviance D(θ).
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interest. Nevertheless, a suitable relabeling of the posterior sample must be first conducted
to calculate these, as we did in Section 3.4.

In this section, we first show how to easily obtain basic posterior summary statistics of the
important model parameters by the mean of routines implemented in the mixAK package.
Second, we exemplify usage of the posterior samples stored in the object mod created in
Section 3.4 in connection with the coda package to obtain more detailed posterior summaries.

Posterior summary statistics for the GLMM related parameters

Basic posterior summary statistics for many of the above-mentioned quantities have in fact
already been calculated by the function GLMM_MCMC and are stored as the following compo-
nents of the objects mod[[1]] and mod[[2]]: summ.Deviance (observed data deviance D(θ)),
summ.alpha (fixed effect α1, . . . ,αR), summ.sigma_eps (square roots of the dispersion param-
eters φ1, . . . , φR), summ.b.Mean (overall means β of random effects), summ.b.SDCorr (stan-
dard deviations and the correlation coefficients derived from the overall covariance matrix D
of random effects). To inspect their values in a synoptic form, we simply print the object mod
(output has been shortened).

R> print(mod)

Generalized linear mixed model for 3 responses estimated using MCMC

====================================================================

Penalized expected deviance:

----------------------------

D.expect p(opt) PED wp(opt) wPED

14088.3 74.5 14162.8 74.8 14163.1

Deviance posterior summary statistics:

-----------------------------------------------

Mean Std.Dev. Min. 2.5% 1st Qu. Median 3rd Qu. 97.5% Max.

Chain 1 14089 10.5 14063 14071 14081 14088 14096 14111 14120

Chain 2 14088 10.1 14057 14069 14080 14087 14094 14108 14125

Posterior summary statistics for fixed effects:

-----------------------------------------------

Mean Std.Dev. Min. 2.5% 1st Qu. Median 3rd Qu. 97.5% Max.

Chain 1 0.0277 0.0128 -0.0124 0.0029 0.0189 0.0278 0.0367 0.0519 0.0735

Chain 2 0.0281 0.0130 -0.0209 0.0024 0.0200 0.0282 0.0367 0.0519 0.0769

Distribution of random effects is a normal mixture with 2 components

---------------------------------------------------------------------

Posterior summary statistics for moments of mixture for random effects:

-----------------------------------------------------------------------

Means:

b.Mean.1(Chain 1) b.Mean.1(Chain 2) b.Mean.2(Chain 1)

Mean 0.3185 0.3103 0.00775
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Std.Dev. 0.0557 0.0566 0.00182

Min. 0.1422 0.1130 0.00180

2.5% 0.2056 0.2017 0.00443

1st Qu. 0.2805 0.2716 0.00650

Median 0.3194 0.3097 0.00776

3rd Qu. 0.3545 0.3498 0.00898

97.5% 0.4288 0.4171 0.01151

Max. 0.4996 0.4833 0.01401

b.Mean.2(Chain 2) b.Mean.3(Chain 1) b.Mean.3(Chain 2)

Mean 0.00785 5.5262 5.5273

...

Standard deviations and correlations:

b.SD.1(Chain 1) b.SD.1(Chain 2) b.Corr.2.1(Chain 1)

Mean 0.8736 0.8728 0.0527

...

Posterior summary statistics for standard deviations

of residuals of continuous responses:

----------------------------------------------------

Mean Std.Dev. Min. 2.5% 1st Qu. Median 3rd Qu. 97.5% Max.

Chain 1 0.314 0.0101 0.282 0.294 0.307 0.314 0.321 0.334 0.344

Chain 2 0.314 0.0104 0.284 0.293 0.307 0.314 0.321 0.337 0.352

On top of the output, we have a summary of the Penalized Expected Deviance introduced
in Section 2.4. We return to it in Section 3.8 when discussing a selection of the number of
components in this particular example. The rest of the output is devoted to the posterior
summary statistics (posterior mean, posterior standard deviation, posterior 0%, 2.5%, 25%,
50%, 75%, 97.5% and 100% quantiles) of the most important model parameters. Among other
things, we also directly see the 95% equal-tail credible intervals. In particular, the output
shows the posterior summaries of the following model parameters: (i) the model deviance
D(θ), e.g., its posterior means estimated using the first and the second chain are 14 089
and 14 088, respectively, the estimated posterior medians have values of 14 088 and 14 087,
respectively; (ii) the fixed effects α1, . . . ,αR; (iii) the overall mean vector β of the random
effects; (iv) standard deviations and correlations derived from the overall covariance matrix
D of the random effects; (v) square roots of the dispersion parameters φ1, . . . , φR.

To get the posterior summary including estimates of Monte Carlo errors in the estimation
of the posterior means, one may use the summary procedure from the coda package applied
directly to matrices of sampled values. As illustration, we create a matrix containing the
sampled values of the means β of random effects, the fixed effect α3 (slope from the logit
model for a variable spiders), and the square root of the dispersion parameter φ1 (residual
standard deviation from the linear mixed model for a variable lbili), and calculate the
posterior summary using the coda package.

R> name.Eb <- paste("b.Mean.", 1:5, sep = "")

R> RegrChain1 <- cbind(mod[[1]]$mixture_b[, name.Eb],

+ mod[[1]]$alpha, mod[[1]]$sigma_eps)
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R> RegrChain2 <- cbind(mod[[2]]$mixture_b[, name.Eb],

+ mod[[2]]$alpha, mod[[2]]$sigma_eps)

R> colnames(RegrChain1) <- colnames(RegrChain2) <-

+ c(paste(rep(c("lbili", "platelet", "spiders"), each = 2),

+ ":", rep(c("Intcpt", "Slope"), 3), sep=""),

+ "lbili:res_std_dev")

R> RegrChain1 <- mcmc(RegrChain1)

R> RegrChain2 <- mcmc(RegrChain2)

R> summary(mcmc.list(RegrChain1, RegrChain2))

Iterations = 1:1000

Thinning interval = 1

Number of chains = 2

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

lbili:Intcpt 0.31439 0.05628 1.26e-03 1.23e-03

lbili:Slope 0.00780 0.00180 4.03e-05 4.49e-05

platelet:Intcpt 5.52674 0.02215 4.95e-04 4.29e-04

platelet:Slope -0.00669 0.00115 2.57e-05 2.57e-05

spiders:Intcpt -2.90215 0.47597 1.06e-02 2.44e-02

spiders:Slope 0.02790 0.01288 2.88e-04 3.31e-04

lbili:res_std_dev 0.31397 0.01028 2.30e-04 2.54e-04

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

lbili:Intcpt 0.20293 0.27519 0.31443 0.35174 0.42221

lbili:Slope 0.00429 0.00659 0.00782 0.00895 0.01140

platelet:Intcpt 5.48533 5.51110 5.52607 5.54155 5.56978

platelet:Slope -0.00898 -0.00743 -0.00668 -0.00591 -0.00442

spiders:Intcpt -3.92235 -3.19575 -2.86952 -2.57760 -2.07790

spiders:Slope 0.00247 0.01941 0.02797 0.03668 0.05194

lbili:res_std_dev 0.29368 0.30685 0.31391 0.32065 0.33517

The above output is now based on values from both sampled Markov chains. It shows, for
example, that the estimated posterior mean of the overall mean of the random intercept
from the linear mixed model for the variable lbili (parameter β1 in our notation) is equal
to 0.31446 and the Monte Carlo error in estimation of the posterior mean equals 0.00118.
The related 95% equal-tail credible interval is (0.20195, 0.42167). Analogously, the posterior
summary statistics for the standard deviations and the correlation coefficients derived from
the overall covariance matrix D of the random effects are calculated using the following code
(output not shown):
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R> name.SDb <- paste("b.SD.", 1:5, sep = "")

R> SDbChain1 <- mcmc(mod[[1]]$mixture_b[, name.SDb])

R> SDbChain2 <- mcmc(mod[[2]]$mixture_b[, name.SDb])

R> summary(mcmc.list(SDbChain1, SDbChain2))

R> #

R> name.Corb <- paste("b.Corr.", c(2:5, 3:5, 4:5, 5), ".", rep(1:4, 4:1),

+ sep = "")

R> CorbChain1 <- mcmc(mod[[1]]$mixture_b[, name.Corb])

R> CorbChain2 <- mcmc(mod[[2]]$mixture_b[, name.Corb])

R> summary(mcmc.list(CorbChain1, CorbChain2))

Analogously, other coda routines like HPDinterval(), densplot() and others might be used
to calculate the highest posterior density (HPD) credible intervals, the posterior densities and
other posterior quantities. For example, the HPD credible intervals are calculated (separately
for the first and the second chain) using the following code (output reformatted into two
columns):

R> HPDinterval(mcmc.list(RegrChain1, RegrChain2))

[[1]] [[2]]

lower upper lower upper

lbili:Intcpt 0.21674 0.4357 lbili:Intcpt 0.20257 0.41721

lbili:Slope 0.00414 0.0112 lbili:Slope 0.00417 0.01136

platelet:Intcpt 5.48631 5.5697 platelet:Intcpt 5.48334 5.56916

platelet:Slope -0.00912 -0.0046 platelet:Slope -0.00896 -0.00442

spiders:Intcpt -3.74831 -2.0247 spiders:Intcpt -3.97051 -2.04282

spiders:Slope 0.00414 0.0526 spiders:Slope 0.00244 0.05194

lbili:res_std_dev 0.29262 0.3320 lbili:res_std_dev 0.29136 0.33228

attr(,"Probability") attr(,"Probability")

[1] 0.95 [1] 0.95

Posterior summary statistics for the mixture components

With respect to the clustering intended, posterior summary statistics of the mixture param-
eters (weights w, means µ1, . . . ,µK and covariance matrices D1, . . . ,DK) are of primary
interest as they provide characteristics of the mixture and hence also of the clusters. To this
end, the mixAK package offers a function NMixSummComp() which reports posterior means of
the mixture weights, mixture means and mixture covariance matrices based on the relabeled
sample. On top of that, standard deviations and correlations derived from the posterior means
of the covariance matrices are reported:

R> NMixSummComp(mod[[1]])

Component 1

Weight: 0.589

Mean: -0.211 0.00426 5.58 -0.00559 -4.27



24 R Package mixAK for Clustering Based on Multivariate Longitudinal Data

Covariance matrix:

m1 m2 m3 m4 m5

m1 1.80e-01 8.75e-05 -3.62e-02 -3.71e-04 0.528122

m2 8.75e-05 6.60e-05 9.01e-05 -1.84e-05 0.003039

m3 -3.62e-02 9.01e-05 9.41e-02 -1.31e-04 -0.049586

m4 -3.71e-04 -1.84e-05 -1.31e-04 1.09e-04 0.000837

m5 5.28e-01 3.04e-03 -4.96e-02 8.37e-04 14.986695

Standard deviations: 0.424 0.00813 0.307 0.0105 3.87

Correlation matrix:

m1 m2 m3 m4 m5

m1 1.0000 0.0254 -0.2780 -0.0835 0.3215

m2 0.0254 1.0000 0.0361 -0.2161 0.0966

m3 -0.2780 0.0361 1.0000 -0.0409 -0.0418

m4 -0.0835 -0.2161 -0.0409 1.0000 0.0207

m5 0.3215 0.0966 -0.0418 0.0207 1.0000

---------------------------------------------

Component 2

Weight: 0.411

Mean: 1.09 0.0128 5.46 -0.00811 -0.825

Covariance matrix:

m1 m2 m3 m4 m5

m1 0.61258 -0.004468 0.036689 -0.002318 0.32495

m2 -0.00447 0.000941 -0.000397 0.000171 0.00801

m3 0.03669 -0.000397 0.157806 -0.000479 -0.16971

m4 -0.00232 0.000171 -0.000479 0.000531 -0.00217

m5 0.32495 0.008009 -0.169713 -0.002168 5.84178

Standard deviations: 0.783 0.0307 0.397 0.0231 2.42

Correlation matrix:

m1 m2 m3 m4 m5

m1 1.000 -0.1861 0.1180 -0.1285 0.1718

m2 -0.186 1.0000 -0.0326 0.2419 0.1080

m3 0.118 -0.0326 1.0000 -0.0523 -0.1768

m4 -0.128 0.2419 -0.0523 1.0000 -0.0389

m5 0.172 0.1080 -0.1768 -0.0389 1.0000

---------------------------------------------

That is, for example the posterior means of the parameters of the first mixture component
based on the performed MCMC simulation and a relabeled sample (the first chain) are

ŵ1 = E
(
w1

∣∣Y = y) = 0.589,

µ̂1 = E
(
µ1

∣∣Y = y) =
(
−0.211, 0.00426, 5.58, −0.00559, −4.27

)>
,

(20)
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D̂1 = E
(
D1

∣∣Y = y
)

=


0.180 0.0000875 −0.0362 −0.000371 0.528
0.0000875 0.0000660 0.0000901 −0.0000184 0.00304
−0.0362 0.0000901 0.0941 −0.000131 −0.0496
−0.000371 −0.0000184 −0.000131 0.000109 0.000837

0.528 0.00304 −0.0496 0.000837 15.0

 .

Analogously to the case of the GLMM related parameters, more detailed posterior summary of
the mixture parameters can be obtained by using the coda routines with the posterior samples
of the mixture parameters extracted by the mean of the mixAK function NMixChainComp().
For example, more detailed posterior summary statistics and the 95% HPD credible intervals
for the mixture means based on the first sampled chain are obtained using:

R> summary(mcmc(muSamp1))

Iterations = 1:1000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu1.1 -0.21126 0.06511 2.06e-03 5.02e-03

mu1.2 0.00426 0.00197 6.21e-05 1.39e-04

mu1.3 5.57800 0.04174 1.32e-03 4.11e-03

mu1.4 -0.00559 0.00121 3.83e-05 5.48e-05

mu1.5 -4.27154 0.73912 2.34e-02 5.22e-02

mu2.1 1.08805 0.14350 4.54e-03 1.18e-02

mu2.2 0.01283 0.00421 1.33e-04 1.64e-04

mu2.3 5.45775 0.05600 1.77e-03 3.59e-03

mu2.4 -0.00811 0.00265 8.37e-05 8.82e-05

mu2.5 -0.82469 0.39729 1.26e-02 1.97e-02

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu1.1 -0.334236 -0.25434 -0.21351 -0.16864 -0.08649

mu1.2 0.000298 0.00292 0.00422 0.00568 0.00790

mu1.3 5.494958 5.55050 5.58047 5.60731 5.65415

mu1.4 -0.008006 -0.00633 -0.00563 -0.00481 -0.00306

mu1.5 -6.005397 -4.69913 -4.20171 -3.74902 -3.02452

mu2.1 0.799439 0.99361 1.08969 1.18661 1.35502

mu2.2 0.004342 0.01009 0.01260 0.01539 0.02165

mu2.3 5.355440 5.41873 5.45577 5.49392 5.56880
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mu2.4 -0.013460 -0.00978 -0.00806 -0.00627 -0.00310

mu2.5 -1.626945 -1.09172 -0.82137 -0.57188 -0.04295

R> HPDinterval(mcmc(muSamp1))

lower upper

mu1.1 -0.340065 -0.09240

mu1.2 0.000785 0.00825

mu1.3 5.497083 5.65449

mu1.4 -0.008090 -0.00328

mu1.5 -5.836688 -2.94372

mu2.1 0.782802 1.33216

mu2.2 0.004047 0.02134

mu2.3 5.355365 5.56869

mu2.4 -0.013130 -0.00285

mu2.5 -1.546493 0.01009

attr(,"Probability")

[1] 0.95

3.7. Clustering

In this section, we first discuss the possibilities of characterization of the mixture components
in more detail, i.e., clusters that were found by our analysis. Second, we exemplify usage of
the posterior samples stored in the object mod for classification of individual subjects into
those clusters.

Cluster specific mean longitudinal profiles

As we mentioned in Section 3.5, clusters in our model are characterized by the mixture pa-
rameters (weights w1, . . . , wK , means µ1, . . . ,µK , covariance matrices D1, . . . ,DK) and their
derivatives for which we already calculated posterior summary statistics, see, e.g., Equa-
tion (20) for the posterior means of the parameters of the first mixture component. To
visualize those results and to see better the characteristics of the different clusters, we can
calculate estimated values of the cluster specific mean longitudinal profiles of the response
variables. To this end, a generic function fitted() was extended in the mixAK package by
a method for objects of class GLMM_MCMC. It provides the empirical Bayes estimates of those
longitudinal profiles. In the following, let µ̂k, D̂k, k = 1, . . . ,K, be the posterior means of
mixture means and covariance matrices, respectively. Further, let µ̂k,r and D̂k,r denote for

each k = 1, . . . ,K, r = 1, . . . , R a proper subvector of µ̂k and a submatrix of D̂k, respectively,
corresponding to the random effects vector for the rth response variable. In particular, the
fitted function calculates the values of

E
(
Ynew,r,j

∣∣Unew = k; θ̂
)

=

∫
E
(
Ynew,r,j

∣∣Bnew,r = bnew,r; α̂
)
ϕ(bnew,r; µ̂k,r, D̂k,r) dbnew,r, (21)
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r = 1, . . . , R, k = 1, . . . ,K, j = 1, . . . , nnew for selected combinations of covariates entering
the model expression (4) of E

(
Ynew,r,j

∣∣Bnew,r = bnew,r; α̂
)
.

In our example, the only covariates included in the model are the visit times. The following
code then calculates the values of (21) for r = 1, . . . , R, k = 1, . . . ,K, and the covariate values
tnew,1 = 0, tnew,2 = 0.3, . . ., tnew,101 = 30 (i.e., nnew = 101):

R> delta <- 0.3

R> tpred <- seq(0, 30, by = delta)

R> fit <- fitted(mod[[1]], x =list("empty", "empty", tpred),

+ z =list(tpred, tpred, "empty"),

+ glmer = TRUE)

R> names(fit) <- c("lbili", "platelet", "spiders")

The covariate combinations for which (21) is to be calculated are given as arguments x (fixed
effects covariates) and z (random effects covariates).

Further, we point out that with glmer = FALSE in the call to fitted, calculation is faster but
the integral in (21) is only rather inaccurately approximated by E

(
Ynew,r,j

∣∣Bnew,r = µ̂k,r; α̂
)
,

that is, the random effect values are replaced by their means rather than being integrated
out.

The resulting object fit is a list of length R = 3, where each list component is a nnew×K
matrix. The kth column, k = 1, . . . ,K, of the rth, r = 1, . . . , R, matrix gives the calculated
values of E

(
Y·,r,·

∣∣U· = k, θ̂
)

for the covariate combinations corresponding to the vectors or
matrices specified by the x, x2, z, z2 arguments. For instance, the first three values of the
component specific estimated longitudinal profiles for the variable platelet are as follows.

R> print(fit[["platelet"]][1:3,], digits = 5)

[,1] [,2]

[1,] 277.28 253.83

[2,] 276.81 253.18

[3,] 276.34 252.55

With respect to the interpretation of the clusters found, it is probably more useful to draw the
estimated cluster specific mean longitudinal profiles, perhaps together with the data observed.
To achieve this, we use a mild modification of the code shown in Section 3.2 for Figure 1.
A plot of observed longitudinal profiles together with the cluster specific mean profiles for
a variable lbili (see the upper panel of Figure 3) is drawn using the following commands:

R> K <- mod[[1]]$prior.b$Kmax

R> clCOL <- c("darkgreen", "red3")

R> plotProfiles(ip = ip, data = PBC910, var = "lbili", tvar = "month",

+ col = "azure3", main = "Log(bilirubin)",

+ xlab = "Time (months)", ylab = "Log(bilirubin)")

R> for (k in 1:K) lines(tpred, fit[["lbili"]][, k], col = clCOL[k], lwd = 2)

The remaining panels of Figure 3 are drawn analogously. We now see from Figure 3 that the
first (green) cluster is characterized by lower bilirubin values and also by less frequent blood
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vessel malformations whose probability only slightly rise over time. On the other hand, the
second (red) cluster corresponds to subjects with higher bilirubin values and more frequent
blood vessel malformations whose occurrence increases more steeply over time. With respect
to the longitudinal evolution of the platelet counts, both groups behave almost equally on
average.

The full code to draw Figure 3 is the following.

R> K <- mod[[1]]$prior.b$Kmax

R> clCOL <- c("darkgreen", "red3")

R> obsCOL <- "azure3"
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Figure 3: Observed longitudinal profiles of considered markers together with the estimated
cluster specific mean profiles (cluster 1 in green, cluster 2 in red).
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R> layout(autolayout(3))

R> plotProfiles(ip = ip, data = PBC910, var = "lbili", tvar = "month",

+ auto.layout = FALSE, main = "Log(bilirubin)",

+ xlab = "Time (months)", ylab = "Log(bilirubin)", col = obsCOL)

R> for (k in 1:K) lines(tpred, fit[["lbili"]][, k], col = clCOL[k], lwd = 2)

R> plotProfiles(ip = ip, data = PBC910, var = "platelet", tvar = "month",

+ auto.layout = FALSE, main = "Platelet count",

+ xlab = "Time (months)", ylab = "Platelet count", col = obsCOL)

R> for (k in 1:K) lines(tpred, fit[["platelet"]][, k], col = clCOL[k], lwd = 2)

R> plotProfiles(ip = ip, data = PBC910, var = "jspiders", tvar = "month",

+ lines = FALSE, points = TRUE,

+ auto.layout = FALSE, main = "Blood vessel malform.",

+ xlab = "Time (months)", ylab = "Blood vessel malform. (jittered)",

+ bg = obsCOL, col = "grey70")

R> for (k in 1:K) lines(tpred, fit[["spiders"]][, k], col = clCOL[k], lwd = 2)

Individual component probabilities

We explain in Section 1.1 that model-based clustering is based on the individual component
probabilities (ICPs) pi,k = pi,k(θ) = P

(
Ui = k

∣∣Yi = yi; θ
)
, i = 1, . . . , N , k = 1, . . . ,K, see

Equation (3). Upon running the NMixRelabel() procedure in Section 3.4, an MCMC sample
from the posterior distribution of pi,k is available within the resulting GLMM_MCMC objects
mod[[1]] and mod[[2]] for each i = 1, . . . , N, k = 1, . . . ,K. These are the values

p
(m)
i,k = pi,k

(
θ(m)

)
= P

(
Ui = k

∣∣Yi = yi; θ
(m)
)
, m = 1, . . . ,M, (22)

where θ(1), . . . ,θ(M) is an MCMC sample from the posterior distribution p
(
θ
∣∣y). In the

following paragraphs, we show how to use different characteristics of the posterior distributions
of each pi,k for clustering purposes.

Before we proceed to classification itself, we show how to access the values of (22). They are
stored as an M×(N ·K) matrix comp.prob of GLMM_MCMC objects where each row corresponds
to one MCMC iteration and the columns of the mth row provide in a sequence the values of

p
(m)
1,1 , . . . , p

(m)
1,K , . . ., p

(m)
N,1, . . . , p

(m)
N,K . The labeling of components corresponds to that obtained

by applying a relabeling algorithm in Section 3.4. For example, the first three sampled values
(from the first chain) of the ICPs of the first four subjects in the dataset are as follows:

R> print(mod[[1]]$comp.prob[1:3, 1:8])

P(1,1) P(1,2) P(2,1) P(2,2) P(3,1) P(3,2) P(4,1) P(4,2)

[1,] 0.803 0.197 0.704 0.296 0.84183 0.158 0.054087 0.946

[2,] 0.729 0.271 0.437 0.563 0.16346 0.837 0.013635 0.986

[3,] 0.187 0.813 0.173 0.827 0.00965 0.990 0.000235 1.000

Finally, we point out that a similar matrix called comp.prob_b is present inside the GLMM_MCMC

objects. It provides the values of P
(
Ui = k

∣∣Yi = yi; Bi = b
(m)
i , θ(m)

)
(which are different

from those given by Equation 22), i = 1, . . . , N, k = 1, . . . ,K, m = 1, . . . ,M , where b
(m)
i are
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the sampled values of the ith subject random effects. The values of P
(
Ui = k

∣∣Yi = yi; Bi =

b
(m)
i , θ(m)

)
might be of interest in some situations. Nevertheless, we shall not use them for

any purposes in this manuscript.

Clustering procedure

As indicated in Section 2.3, the clustering procedure in a Bayesian setting can straightfor-
wardly be based on the posterior means p̂i,k = E

{
pi,k(θ)

∣∣Y = y
}

, i = 1, . . . , N , k = 1, . . . ,K,
of the ICPs, see also Equation (14). Their MCMC based estimates are included in the
GLMM_MCMC objects as an N × K matrix poster.comp.prob. We print its first three rows
which provide the MCMC estimated values of p̂i,k for i = 1, 2, 3, k = 1, 2:

R> print(mod[[1]]$poster.comp.prob[1:3,])

[,1] [,2]

[1,] 0.683 0.317

[2,] 0.558 0.442

[3,] 0.489 0.511

The most common classification procedure which assigns subject i into group g(i) satisfying
p̂i,g(i) = maxk=1,...,K p̂i,k is then achieved by the following code which also stores the values of
p̂i,g(i), i = 1, . . . , N , in a vector pMean:

R> groupMean <- apply(mod[[1]]$poster.comp.prob, 1, which.max)

R> pMean <- apply(mod[[1]]$poster.comp.prob, 1, max)

R> table(groupMean)

groupMean

1 2

161 99

That is, 161 and 99 subjects are classified in the first and the second group, respectively, and
represented in Figure 3 by the green and the red cluster specific mean profiles, respectively.

Nevertheless, the posterior mean is only one possible one-number characteristic of the poste-
rior distribution. A reasonable, and often even more suitable characteristic is the posterior
median which can also base the clustering procedure. The posterior medians, together with
the 2.5% and 97.5% quantiles of the posterior distributions of the ICPs are available in the
quant.comp.prob elements of the GLMM_MCMC objects. As illustration, we again provide the
posterior medians of the ICPs for the first three subjects:

R> print(mod[[1]]$quant.comp.prob[["50%"]][1:3,])

[,1] [,2]

[1,] 0.786 0.214

[2,] 0.615 0.385

[3,] 0.495 0.505

Analogously, the 2.5% and 97.5% quantiles of the posterior distributions of the ICPs for the
first three subjects are obtained as



Arnošt Komárek, Lenka Komárková 31

R> print(mod[[1]]$quant.comp.prob[["2.5%"]][1:3,])

[,1] [,2]

[1,] 0.0327 0.0111

[2,] 0.0311 0.0385

[3,] 0.0217 0.0518

R> print(mod[[1]]$quant.comp.prob[["97.5%"]][1:3,])

[,1] [,2]

[1,] 0.989 0.967

[2,] 0.962 0.969

[3,] 0.948 0.978

Classification procedure which assigns the subject into a group for which the posterior median
of the individual component probability is maximal is implemented as follows.

R> groupMed <- apply(mod[[1]]$quant.comp.prob[["50%"]], 1, which.max)

R> pMed <- apply(mod[[1]]$quant.comp.prob[["50%"]], 1, max)

R> table(groupMed)

groupMed

1 2

162 98

R> table(groupMean, groupMed)

groupMed

groupMean 1 2

1 161 0

2 1 98

Classification of one subject (id 66) has changed. Nevertheless, both the posterior mean and
the posterior median of pi,g(i) are close to the classification threshold of 0.5 as we illustrate
using the following code:

R> pMeanMed <- data.frame(Mean = pMean, Median = pMed)

R> rownames(pMeanMed) <- unique(PBC910$id)

R> print(pMeanMed[groupMean != groupMed, ])

Mean Median

66 0.502 0.505
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Finally, we point out that the GLMM_MCMC objects additionally contain related matrix el-
ements called poster.comp.prob_u and poster.comp.prob_b having the same structure
as the poster.comp.prob matrix. They all provide the MCMC based estimates of the
posterior means of the ICPs pi,k, i = 1, . . . , N , k = 1, . . . ,K, nevertheless, calculated
in different ways stemming from different representations of the conditional probabilities
P(Ui = k |Y = y) = E

{
pi,k(θ)

∣∣Y = y
}

. That is,

p̂i,k = P(Ui = k |Y = y) = E
{
I(Ui = k)

∣∣Y = y
}

(23)

=

∫
P(Ui = k |Yi = yi; Bi = bi,θ) p(θ, bi |y) d(θ, bi), (24)

i = 1, . . . , N , k = 1, . . . ,K. The poster.comp.prob_u values are calculated using the repre-
sentation (23) as

p̂
[1]
i,k = M−1

M∑
m=1

I(u(m)
i = k), i = 1, . . . , N, k = 1, . . . ,K.

Analogously, the poster.comp.prob_b values are calculated using the representation (24) as

p̂
[2]
i,k = M−1

M∑
m=1

P
(
Ui = k

∣∣Yi = yi; Bi = b
(m)
i , θ(m)

)
, i = 1, . . . , N, k = 1, . . . ,K.

Additionally, the GLMM_MCMC objects include the components quant.comp.prob_b and comp.

prob_b which have the same meaning as the components quant.comp.prob and comp.prob,
nevertheless, they are now based on the posterior samples for the values of P

(
Ui = k

∣∣Yi =

yi; Bi = b
(m)
i , θ(m)

)
.

Posterior distribution and credible intervals of the individual component probabilities

Up to now, only one-number characteristics of the posterior distributions of the ICPs were
used for the purposes of clustering which in fact corresponds to the use of the point estimates
in a frequentist setting. Nevertheless, the one-number characteristics have a different infor-
mative value for different subjects due to different variability of the posterior distributions,
i.e., as point estimates they have a different precision when talking in frequentist terms. To
illustrate this, Figure 4 shows histograms of sampled values of pi,1 (i.e., their estimated poste-
rior densities) for three subjects (id 2, 7, 11) together with their posterior mean and median.
The figure was created by applying a standard R function hist on appropriate columns of
the mod[[1]]$comp.prob matrix. The full code towards Figure 4 is the following.

R> IDS <- unique(PBC910$id)

R> N <- ncol(mod[[1]]$comp.prob) / K

R> ID <- c(2, 7, 11)

R> par(mfrow = c(1, 3))

R> for (id in ID){

+ i <- (1:N)[IDS == id]

+ hist(mod[[1]]$comp.prob[, (i - 1) * K + 1], xlim = c(0, 1), prob = TRUE,

+ xlab = expression(paste("P(U=1|Y=y; ", theta, ")",

+ sep = "")),
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+ col = rainbow_hcl(1, start=60),

+ main = paste("ID ", id, " (",

+ format(round(pMean[i], 3), nsmall = 3), ", ",

+ format(round(pMed[i], 3), nsmall = 3), ")",

+ sep=""))

+ }

Besides a different variability of the posterior distributions of the ICPs, Figure 4 also shows
that those posterior distributions are often skewed which lead us to conclude that if only
a one-number characteristic of the posterior distribution should be used, then the posterior
medians are probably a better choice than the posterior means.

When also taking into account the variability of the posterior distribution of the ICPs, we also
suggest incorporating the credible intervals of the ICPs in the classification. We ultimately
classify the ith subject into group g(i) only if p̂i,g(i) = maxk=1,...,K p̂i,k (p̂i,k are suitable one-
number characteristics of the posterior distributions of the ICPs, e.g., the posterior means
or medians) and at the same time the lower limit of the credible interval for pi,g(i) exceeds
a certain threshold, for instance 0.5. Indeed, some subjects may remain unclassified with
such a rule. Nevertheless, this may not be a problem in practice if we view this classification
exercise as one step in a multi-level classification procedure. Subjects with unknown cluster
pertinence (and only those subjects) may proceed to another (more complicated or more
expensive) level of the full classification procedure. A classification which exploits the HPD
credible intervals (calculated by the mean of the coda function HPDinterval()) for the ICPs
with a threshold for ultimate classification of 0.5 is implemented by the following code. The
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Figure 4: Histograms of sampled values of the individual component probabilities pi,1(θ) for
three subjects. Above the plot: posterior mean and posterior median of pi,1(θ).
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missing value indicator NA is used to mark the classification for those subjects for whom none
of the lower limits of the credible intervals exceeds the threshold.

R> pHPD <- HPDinterval(mcmc(mod[[1]]$comp.prob))

R> pHPDlower <- matrix(pHPD[, "lower"], ncol = 2, byrow = TRUE)

R> pHPDupper <- matrix(pHPD[, "upper"], ncol = 2, byrow = TRUE)

R> rownames(pHPDlower) <- rownames(pHPDupper) <- unique(PBC910$id)

R> groupHPD <- groupMed

R> groupHPD[groupHPD == 1 & pHPDlower[, 1] <= 0.5] <- NA

R> groupHPD[groupHPD == 2 & pHPDlower[, 2] <= 0.5] <- NA

R> table(groupHPD, useNA = "ifany")

groupHPD

1 2 <NA>

123 70 67

That is, applying the above-described classification procedure based on the credible intervals
for the ICPs lead to 123 subjects being classified in group 1 and 70 subjects being classified in
group 2. For 67 subjects, the ultimate classification cannot be determined due to the fact that
their observed longitudinal markers do not provide enough certainty for classification into any
of the two considered groups. To see how many subjects originally classified in the first and
the second group, respectively, remained unclassified using the HPD credible intervals, we
create a variable groupMeanHPD which will be a combination of groupMean and groupHPD:

R> groupMeanHPD <- as.character(groupMean)

R> groupMeanHPD[is.na(groupHPD) & groupMean == 1] <- "1_NA"

R> groupMeanHPD[is.na(groupHPD) & groupMean == 2] <- "2_NA"

R> groupMeanHPD <- factor(groupMeanHPD, levels = c("1", "2", "1_NA", "2_NA"))

R> table(groupMeanHPD)

groupMeanHPD

1 2 1_NA 2_NA

123 70 38 29

Observed longitudinal profiles by clusters

Results of the clustering procedure may be visualized by plotting the observed longitudinal
profiles using different colors according to the subject’s classification. To achieve this for
a classification stored in a vector groupHPD, the following procedure leading to Figure 5 can
be followed. We first add to the original data.frame PBC910 factors created from the
classification vectors groupMed and groupHPD while turning NA into one of the groupMed

factor levels.

R> TAB <- table(PBC910$id)

R> PBC910$groupMed <- factor(rep(groupMed, TAB))

R> PBC910$groupHPD <- factor(rep(groupHPD, TAB))

R> PBC910$groupHPD <- addNA(PBC910$groupHPD)
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Second, we again extract the longitudinal profiles while keeping also the group indicators in
the resulting object.

R> ip <- getProfiles(t = "month",

+ y = c("lbili", "platelet", "spiders", "jspiders", "groupMed", "groupHPD"),

+ id = "id", data = PBC910)

R> print(ip[[1]])

month lbili platelet spiders jspiders groupMed groupHPD

1 0.00 0.0953 221 1 0.986 1 <NA>
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Figure 5: Observed longitudinal profiles of considered markers colored according to classifi-
cation based on the HPD credible intervals for the individual component probabilities.
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Figure 6: Observed longitudinal profiles of considered markers by group according to the
posterior medians of ICPs together with the estimated cluster specific mean profiles (thick
lines). Left panel: group 1, right panel: group 2. Data from subjects being unclassified
according to the HPD credible interval for the ICPs are drawn in a light blue.
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2 5.98 -0.2231 188 1 0.884 1 <NA>

3 11.99 0.0000 161 1 0.817 1 <NA>

4 25.23 0.6419 122 1 0.856 1 <NA>

Finally, we plot the observed longitudinal profiles while using different colors for profiles
of subjects belonging to different groups according to a variable groupHPD. To this end,
arguments gvar and col of the mixAK function plotProfiles() are exploited:

R> GCOL <- rainbow_hcl(3, start = 220, end = 40, c = 50, l = 60)[c(2, 3, 1)]

R> GCOL2 <- c("darkgreen", "red3", "skyblue")

R> names(GCOL) <- names(GCOL2) <- levels(PBC910$groupHPD)

R> layout(autolayout(4))

R> # Log(bilirubin):

R> plotProfiles(ip = ip, data = PBC910, var = "lbili", tvar = "month",

+ gvar = "groupHPD", col = GCOL,

+ auto.layout = FALSE, main = "Log(bilirubin)",

+ xlab = "Time (months)", ylab = "Log(bilirubin)")

R> # Legend:

R> plot(c(0, 100), c(0, 100), type = "n",

+ xaxt = "n", yaxt = "n", xlab = "", ylab = "")

R> legend(0, 90, legend = c("Group 1", "Group 2",

+ "Uncertain classification"),

+ lty = 1, lwd = 5, col = GCOL, y.intersp = 1.5, cex=1.1)

R> # Platelet count:

R> plotProfiles(ip = ip, data = PBC910, var = "platelet", tvar = "month",

+ gvar = "groupHPD", col = GCOL,

+ auto.layout = FALSE, main = "Platelet count",

+ xlab = "Time (months)", ylab = "Platelet count")

R> # Blood vessel malformations

R> plotProfiles(ip = ip, data = PBC910, var = "jspiders", tvar = "month",

+ lines = FALSE, points = TRUE,

+ gvar = "groupHPD", bg = GCOL, col = GCOL2,

+ auto.layout = FALSE, main = "Blood vessel malform.",

+ xlab = "Time (months)", ylab = "Blood vessel malform. (jittered)")

Figure 5 now shows even better than the previously discussed Figure 3 that group 1 is com-
posed of subjects with lower bilirubin values compared to group 2. Further, we see that the
platelet count values do not contribute greatly to the classification and that the occurrence of
blood vessel malformations is visibly lower in group 1 than in group 2. All these findings are
indeed in accordance with our findings based on the estimated cluster specific mean profiles
discussed earlier with Figure 3. Probably a clearer picture can be obtained by plotting the
longitudinal profiles of subjects belonging to different groups in separate plots as shown on
Figure 6:

R> ips <- list()

R> for (k in 1:K){

+ ips[[k]] <- getProfiles(t = "month",
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+ y = c("lbili", "platelet", "spiders", "jspiders", "groupHPD"),

+ id = "id", data = subset(PBC910, groupMed == k))

+ }

R> yvars <- c("lbili", "platelet", "jspiders")

R> fit.yvars <- c("lbili", "platelet", "spiders")

R> ylabs <- c("Log(bilirubin)", "Platelet count",

+ "Blood vessel malform. (jittered)")

R> par(mfrow = c(3, 2))

R> for (v in 1:length(yvars)){

+ for (k in 1:2){

+ YLIM <- range(PBC910[, yvars[v]], na.rm = TRUE)

+ plotProfiles(ip = ips[[k]],

+ data = subset(PBC910, groupMed == k),

+ var = yvars[v], tvar = "month", ylim = YLIM,

+ gvar = "groupHPD", col = if (v <= 2) GCOL else GCOL2, bg = GCOL,

+ xlab = "Time (months)",

+ ylab = ifelse(k == 1, ylabs[v], ""),

+ yaxt = ifelse(k == 1, "s", "n"),

+ lines = (v <= 2), points = (v == 3), cex.points = 1.4,

+ auto.layout = FALSE, main = "")

+ lines(tpred, fit[[fit.yvars[v]]][, k], col = clCOL[k], lwd = 3)

+ if (v == 1) title(main = paste("Group", k), cex.main = 1.5)

+ }

+ }

3.8. Selection of a number of mixture components

The final part of our example analysis shall be devoted to the selection of a number of mixture
components using the approaches outlined in Section 2.4.

Penalized expected deviance

For a fitted model, the value of the penalized expected value (15) together with related
quantities is available as a vector element PED of an object of class GLMM_MCMClist:

R> print(mod$PED)

D.expect p(opt) PED wp(opt) wPED

14088.3 74.5 14162.8 74.8 14163.1

The same values were also seen on top of the output from print(mod) in Section 3.6. In
the output above, D.expect is the estimated value of E

{
D(θ)

∣∣Y = y
}

from Equation (15),
based on both sampled chains stored in a GLMM_MCMClist object mod. Further, p(opt) and
wp(opt) are the values of the penalty term popt estimated by the importance sampling as
generally outlined by Plummer (2008). Both p(opt) and wp(opt) are weighted averages of
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certain quantities based on generated importance samples, where p(opt) exploits the unity
weights whereas wp(opt) the weights proposed by Plummer (2008). Nevertheless, as argued
by him, for regular models the difference between p(opt) and wp(opt) becomes vanishingly
small (as it is the case in our example) with increasing sample size. Therefore, in many
practical situations it does not really matter which method is used to calculate the penalty
term popt. Finally, PED and wPED are the PED values calculated using Equation (15) while
p(opt) and wp(opt), respectively, is used as the value of popt.

Deviance samples

In Section 2.4 we further mentioned that the selection of a number of mixture components
can also be based on the posterior distribution of the deviances. The two parallel samples
from this posterior distribution which we later use to calculate either the posterior probability
(16) or the values of the cdf (18), are available as Deviance1 and Deviance2 vector elements
of an object of class GLMM_MCMClist. For example, the first ten values of the first sample are:

R> print(mod$Deviance1[1:10], digits = 9)

[1] 14086.4445 14095.8681 14113.7117 14097.6682 14109.1799 14102.2900

[7] 14110.1603 14098.9010 14109.3791 14096.8414

Note that the mod$Deviance1 vector provides the same posterior sample as the mod[[1]]$De-
viance vector (see Section 3.5) and analogously mod$Deviance2 vector provides the same
sample as the mod[[2]]$Deviance vector. Nevertheless, when comparing the output above
from that on page 17 where we printed the first ten elements of a vector mod[[1]]$Deviance,
a negligible difference is seen. This arises from the fact that the Laplace approximation around
the mode of the integrand located by the Newton-Raphson algorithm is used to calculate
numerically the integrals in (8) needed for the deviance evaluation and the initial values
for the Newton-Raphson algorithm are different for calculation of mod[[1]]$Deviance and
mod$Deviance1, respectively. Analogously, the values in mod$Deviance2 are slightly different
from those in mod[[2]]$Deviance.

Comparison of models with different numbers of components

To use the penalized expected deviance, or any other characteristic of the fitted model for the
selection of a number of mixture components, models with different values of K must be first
fitted. This can be done by running the following code where we run the posterior MCMC
simulation for models with K = 1, 2, 3, 4. To use only a necessary amount of the operating
memory we keep from each model only the deviance samples (to be stored in the lists Devs1
and Devs2) and the values of the penalized expected deviance and the related quantities (to
be stored in a data.frame PED).

R> Devs1 <- Devs2 <- list()

R> PED <- data.frame()

R> for (K in 1:4){

+ cat("Calculating K = ", K, "\n========================\n", sep="")

+ if (K == 2){

+ modK <- mod
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+ }else{

+ set.seed(20042005 + K)

+ modK <- GLMM_MCMC(y = PBC910[, c("lbili", "platelet", "spiders")],

+ dist = c("gaussian", "poisson(log)", "binomial(logit)"),

+ id = PBC910[, "id"],

+ x = list(lbili = "empty",

+ platelet = "empty",

+ spiders = PBC910[, "month"]),

+ z = list(lbili = PBC910[, "month"],

+ platelet = PBC910[, "month"],

+ spiders = "empty"),

+ random.intercept = rep(TRUE, 3),

+ prior.b = list(Kmax = K),

+ nMCMC = c(burn = 100, keep = 1000, thin = 10, info = 100),

+ parallel = FALSE)

+ }

+ Devs1[[K]] <- modK[["Deviance1"]]

+ Devs2[[K]] <- modK[["Deviance2"]]

+ PED <- rbind(PED, modK[["PED"]])

+ colnames(PED) <- names(modK[["PED"]])

+

+ rm(list = "modK")

+ }

Consequently, the PED values for the four models are as follows, leading us to conclude that
the best model having the lowest value of the penalized expected deviance is that with K = 2
mixture components:

R> print(PED, digits = 6)

D.expect p(opt) PED wp(opt) wPED

1 14242.0 36.0238 14278.0 35.8741 14277.8

2 14088.3 74.5441 14162.8 74.8084 14163.1

3 14057.3 131.5205 14188.8 132.7313 14190.0

4 14032.7 179.1014 14211.8 277.4600 14310.2

The values of the posterior probabilities (16) and (17) recommended for the model comparison
by Aitkin et al. (2009) are easily obtained by using another mixAK function summaryDiff()

applied to the posterior samples of the model deviances. In the following, let DK(θ) denote
the deviance of a model with K mixture components. We first compare models with K = 2
and K = 1:

R> sD21 <- summaryDiff(c(Devs1[[2]], Devs2[[2]]), c(Devs1[[1]], Devs2[[1]]))

R> print(sD21, digits = 4)

$summary

Mean 2.5% 50% 97.5%
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-153.7 -177.4 -154.2 -129.4

$Pcut

P(diff < -4.39) P(diff < 0)

1 1

The output first provides posterior summary statistics for the difference between D2(θ) −
D1(θ) and then the values of the posterior probabilities (17) and (16), respectively. As both
of these probabilities are practically equal to one, it is clear that a model with K = 2 is
better than that with K = 1 and hence there is a strong evidence that at least two clusters
are present in the data at hand. Using a simple loop (code not shown), analogous values for
comparison of each pair of models were calculated:

R> sDiff <- data.frame()

R> for (K1 in 1:3){

+ for (K2 in (K1 + 1):4){

+ tmp1 <- summaryDiff(c(Devs1[[K2]], Devs2[[K2]]),

+ c(Devs1[[K1]], Devs2[[K1]]))

+ tmp2 <- as.data.frame(matrix(c(tmp1$Pcut, tmp1$summary), nrow = 1))

+ colnames(tmp2) <- c(names(tmp1$Pcut), names(tmp1$summary))

+ rownames(tmp2) <- paste(K2, "-", K1)
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Figure 7: Posterior cumulative distribution functions of the observed data deviances for mod-
els with K = 1, 2, 3, 4.
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+ sDiff <- rbind(sDiff, tmp2)

+ }

+ }

R> print(sDiff)

P(diff < -4.39) P(diff < 0) Mean 2.5% 50% 97.5%

2 - 1 1.000 1.000 -153.7 -177.4 -154.2 -129.401

3 - 1 1.000 1.000 -184.7 -210.6 -184.8 -155.038

4 - 1 0.988 0.988 -209.3 -245.7 -214.1 -170.617

3 - 2 0.952 0.976 -31.0 -62.7 -31.1 -0.121

4 - 2 0.981 0.982 -55.6 -95.5 -60.3 -13.360

4 - 3 0.884 0.914 -24.6 -66.1 -28.9 16.531

If the approach of Aitkin et al. (2009) is used for the model selection, then we would choose
a model with K = 3 components. The posterior probability (17) shown in the first column
of the output above is clearly higher than the value of 0.9 advocated by Aitkin et al. (2009)
to declare model with K = 3 components being evidently better that a model with K = 2
components. Nevertheless, the value of (17) drops below 0.9 when comparing K = 4 to K = 3
components.

Finally, the graphical comparison of the cdf’s of the deviances of the competing models
suggested by Aitkin (2010) is provided by Figure 7 prepared using the following code:

R> COL <- terrain_hcl(4, c = c(65, 15), l = c(45, 80), power = c(0.5, 1.5))

R> plot(c(14000, 14275), c(0, 1), type="n",

+ xlab="Deviance", ylab="Posterior CDF")

R> for (K in 1:4){

+ medDEV <- median(c(Devs1[[K]], Devs2[[K]]))

+ ECDF <- ecdf(c(Devs1[[K]], Devs2[[K]]))

+ plot(ECDF, col = COL[K], lwd = 2, add = TRUE)

+ text(medDEV + 0.5, 0.5, labels = K)

+ }

Figure 7 shows a huge improvement of the model with respect to its deviance when moving
from the K = 1 model to the K = 2 model. The variability of the posterior distribution
of the deviance in a model with K = 2 components is practically the same as with K = 1.
Nevertheless, the K = 2 deviance posterior distribution is clearly shifted to left compared to
K = 1. Almost the same conclusion can be drawn when comparing models with K = 3 and
K = 2 components, and also K = 4 and K = 3 components.

4. Conclusions and outlook

In particular, on a practical example, this paper provides an overview of capabilities of the
mixAK package suitable for clustering based on multivariate continuous and discrete lon-
gitudinal data. It was not possible to describe here all the options and arguments of the
respective functions. Nevertheless, a detailed description of these is available as help pages in
the installed package. Additional technical details can also be found in the package vignettes.
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Further, this manuscript presents the mixAK package mainly as a clustering tool. Never-
theless, the package can also be used in situations when purely a regression analysis with
multivariate longitudinal outcomes is of interest. In this case, Equation (9) suggests that the
(multivariate) mixture GLMM can be considered as a version of the (multivariate) GLMM
being robustified against misspecification of the random effects distribution by assuming a nor-
mal mixture there rather than conventionally used normal distribution.

The functionality of the mixAK package can be extended in the future in several other di-
rections to provide even more flexible clustering tools. First, we may restrict the component
covariance matrices D1, . . . ,DK in (5) to be common as it is often assumed in mixture applica-
tions. Other restrictions imposed on the component covariance matrices, e.g., those considered
by the R package HDclassif, can be thought over as well, of course. This would allow the
user to consider a more parsimonious model underlying the clustering procedure. Second,
possible additional flexibility of the clustering procedure might be achieved by assuming that
not only the distributional components of the random effects vectors of the underlying gener-
alized linear mixed model are cluster specific but that also the fixed effects vectors α1, . . . ,αR

varies across clusters. Further, a normal distribution in (5) could be replaced by, e.g., the
multivariate t-distribution or even more flexible multivariate skew t-distribution (Azzalini and
Capitanio 2003) to have a model being able to capture outlying observations.

In this manuscript, we have shown analysis with outcomes of three types (dichotomous, count,
and continuous) for which three benchmark GLMM’s, mentioned at the end of Section 2.1,
were assumed. Currently, those are the only GLMM’s implemented by the mixAK package.
One important type of outcome, namely a genuine categorical (multinomial) response, is
thus not yet covered by the package. A possible step towards the ability to include also the
multinomial response could consist of incorporating a mixed-effects version of any of routinely
used regression models for such type of outcome in assumption (A1), e.g., the baseline-category
logit model (Agresti 2002, Chapter 7). Nevertheless, this goes far beyond the scope of this
paper.

Finally, it is worth mentioning that the methods implemented in the mixAK package were pri-
marily developed having classical (bio)statistical applications in mind. Notably, even though
multivariate outcomes (R > 1) are considered, the presented methods and their mixAK imple-
mentation, if not properly adjusted, are likely not suitable for the analysis of ultradimensional
outcomes (R being huge) that are often encountered, e.g., in the context of bioinformatics.

Computational details

The output shown in this article was obtained using R version 3.1.1 (2014-07-10), mixAK 3.8,
and the following contributed packages which are the dependencies or imports of the package
mixAK: colorspace 1.2-4 (Ihaka, Murrell, Hornik, Fisher, and Zeileis 2013; Zeileis, Hornik,
and Murrell 2009), lme4 1.1-7 (Bates, Maechler, Bolker, and Walker 2014), fastGHQuad 0.1-1
(Blocker 2011), mnormt 1.5-1 (Azzalini and Genz 2014). Finally, routines from coda 0.16-1
(Plummer et al. 2006) were used in this manuscript.
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[1] "" "" "PED"

[4] "D" "popt" "wpopt"

[7] "inv.D" "inv.popt" "inv.wpopt"

[10] "sumISw" "Deviance1" "Deviance2"

[13] "Deviance_repl1_ch1" "Deviance_repl1_ch2" "Deviance_repl2_ch1"

[16] "Deviance_repl2_ch2"

The first two (unnamed) components of mod, objects mod[[1]] and mod[[2]] are again lists,
class of which is set to GLMM_MCMC, with information pertaining to the first and the second
sampled chain, respectively. The names of their elements are listed by the following output
(shown for mod[[1]] only).

R> names(mod[[1]])

[1] "iter" "nMCMC" "dist"

[4] "R" "p" "q"

[7] "fixed.intercept" "random.intercept" "lalpha"

[10] "dimb" "prior.alpha" "prior.b"

[13] "prior.eps" "init.alpha" "state.first.alpha"

[16] "state.last.alpha" "prop.accept.alpha" "init.b"

[19] "state.first.b" "state.last.b" "prop.accept.b"

[22] "scale.b" "freqK_b" "propK_b"

[25] "init.eps" "state.first.eps" "state.last.eps"

[28] "poster.mean.y" "poster.mean.profile" "poster.mean.w_b"

[31] "poster.mean.mu_b" "poster.mean.Li_b" "poster.mean.Sigma_b"

[34] "poster.mean.Q_b" "poster.comp.prob_u" "poster.comp.prob_b"

[37] "summ.Deviance" "summ.alpha" "summ.b.Mean"

[40] "summ.b.SDCorr" "summ.sigma_eps" "Deviance"

[43] "Cond.Deviance" "K_b" "w_b"

[46] "mu_b" "Li_b" "Q_b"

[49] "Sigma_b" "gammaInv_b" "order_b"

[52] "rank_b" "mixture_b" "alpha"

[55] "sigma_eps" "gammaInv_eps" "relabel_b"

[58] "Cpar" "poster.comp.prob" "comp.prob_b"

[61] "quant.comp.prob_b" "comp.prob" "quant.comp.prob"

In the following, we explain in more detail some of these elements related to the assumed
prior distribution and the initial values for the MCMC, those are in particular:

� scale.b, see Section A.1,

� prior.b, prior.alpha, prior.eps, see Section A.2,

� init.b, init.alpha, init.eps, see Section A.3.

At the same time, we show how to change their default values by proper use of the arguments
scale.b, prior.b, prior.alpha, prior.eps, init.b, init2.b, init.alpha, init2.alpha,
init.eps, init2.eps of the GLMM_MCMC function.
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A.1. Scaling of random effects distribution during the sampling

With respect to the implemented MCMC algorithm, we start by pointing out that due to
possibility of improving the mixing and its numerical stability, the shifted-scaled random
effects

b∗i = S−1 (bi − s), i = 1, . . . , N, (25)

and corresponding shifted-scaled mixture means and covariance matrices

µ∗k = S−1 (µk − s)

D∗k = S−1 Dk S−1

}
k = 1, . . . ,K, (26)

are primarily sampled instead of directly sampling the actual values b1, . . . ,bN of the random
effects, and their mixture means µ1, . . . ,µK and covariance matrices D1, . . . ,DK . Their
sampled values are calculated using the inverse relationships from the sampled values of
b∗1, . . . ,b

∗
N , µ∗1, . . . ,µ

∗
K , and D∗1, . . . ,D

∗
K . In (25) and (26), s is a pre-specified shift vector,

and S is a pre-specified diagonal scale matrix. As it is explained in Komárek and Komárková
(2013, Appendix A), it is useful to choose the values of s and S such that the shifted-scaled
random effects b∗1, . . . ,b

∗
N have approximately zero means and unit variances. If not specified

by the user, the GLMM_MCMC function determines automatically such values of S and s. These
are stored in the scale.b components of both mod[[1]] and mod[[2]] and are always the
same for both sampled chains.

R> print(mod[[1]]$scale.b) R> print(mod[[2]]$scale.b)

$shift

[1] 0.31516 0.00765 5.52621 -0.00663 -2.74948

$scale

(Intercept) z1 (Intercept) z1 (Intercept)

0.8645 0.0201 0.3486 0.0157 3.2284

That is,

s =
(
s1, . . . , s5

)> .
=
(
0.31516, 0.00765, 5.52621, −0.00663, −2.74954

)>
,

S = diag
(
S1, . . . , S5

) .
= diag

(
0.8645, 0.0201, 0.3486, 0.0157, 3.2285

)
.

The user is able to set his/her own values of the shift vector and the scale matrix by using
the scale.b argument in the GLMM_MCMC function call. For example, setting s to a vector of
zeros and S to a unit matrix is achieved by

scale.b = list(shift = rep(0, 5),

scale = rep(1, 5))

A.2. Prior hyperparameters

We continue in exploration of the resulting object mod by checking the particular values of
the hyperparameters of the prior distribution which is in full details described in Komárek
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and Komárková (2013, Appendix A). In particular, we now explore the elements prior.b,
prior.alpha and prior.eps of the objects mod[[1]] and mod[[2]]. We also introduce the
eponymous arguments of the GLMM_MCMC function which allow the user to change the default
values of the prior hyperparameters.

Element prior.b

First, the element prior.b of the objects mod[[1]] and mod[[2]] provides the hyperparame-
ters of the prior distribution for the mixture related parameters which are the mixture weights

w =
(
w1, . . . , wK

)>
, the shifted-scaled mixture means µ∗1, . . . ,µ

∗
K , and scaled mixture covari-

ance matrices D∗1, . . . ,D
∗
K . The number of assumed mixture components, K, is also given

here.

R> print(mod[[1]]$prior.b) R> print(mod[[2]]$prior.b)

$Kmax $distribution

[1] 2 [1] "normal"

$priorK

[1] "fixed"

$priormuQ $lambda

[1] "independentC" [1] 0

$delta $xi

[1] 1 m1 m2 m3 m4 m5

j1 0 0 0 0 0

j2 0 0 0 0 0

$ce $D

c1 c2 m1 m2 m3 m4 m5

0 0 j1.1 36 0 0 0 0

j1.2 0 36 0 0 0

j1.3 0 0 36 0 0

j1.4 0 0 0 36 0

j1.5 0 0 0 0 36

j2.1 36 0 0 0 0

j2.2 0 36 0 0 0

j2.3 0 0 36 0 0

j2.4 0 0 0 36 0

j2.5 0 0 0 0 36

$zeta $gD

[1] 6 [1] 0.2 0.2 0.2 0.2 0.2

$hD

(Intercept) z1 (Intercept) z1 (Intercept)

0.278 0.278 0.278 0.278 0.278
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$gdf $hdf

[1] 1 [1] 0.005

Some parts of the above lists, namely distribution, priorK, lambda, ce, gdf, hdf are
redundant in this situation and are included in the object only for compatibility with other
related functions from the mixAK package. Component priormuQ informs us that a semicon-
jugate independent Normal and Wishart prior, see Komárek and Komárková (2013, Appen-
dices A.8 and A.9) is assumed for the mixture means and the inverted covariance matrices.
Alternatively, a natural-conjugate Normal-Wishart prior (see Komárek 2009, Section 2.2)
can be considered. That is here, the shifted-scaled mixture means µ∗1 and µ∗2 are apriori
independent and normally distributed, i.e., µ∗k ∼ N (ξb, Cb), k = 1, 2. The value of the hy-
perparameter ξb (repeated K = 2-times) is shown in the rows of the matrix xi, the value of
the hyperparameter matrix Cb (again repeated K = 2-times), is shown in the blocks of the
matrix D, i.e.,

µ∗k ∼ N
(
(0, . . . , 0)>, diag(36, . . . , 36)

)
, k = 1, 2.

Further, the inverted scaled mixture covariance matrices D∗1 and D∗2 are apriori independent
Wishart distributed, i.e., D∗k

−1 ∼ W(ζb, Ξb), where Ξb = diag(γb,1, . . . , γb,5) and γ−1b,l ∼
G(gb,l, hb,l), l = 1, . . . , 5. The selected value of the hyperparameter ζb is reflected by the value
of zeta, the values of the hyperparameters gb,l and hb,l are shown by components gD and hD,
respectively. That is, for our application,

D∗k
−1 ∼ W

(
6, diag(γb,1, . . . , γb,5)

)
, k = 1, 2,

γ−1b,l ∼ G(0.2, 0.278), l = 1, . . . , 5.

Finally, the component delta indicates a value of the parameter δ in the Dirichlet prior
assumed for the mixture weights (Komárek and Komárková 2013, Appendix A.7). That is,
in our application, apriori

(w1, w2) ∼ D(1, 1).

The user gets a full control over the choice of just mentioned hyperparameters by replacing
the prior.b = list(Kmax = 2) statement in the GLMM_MCMC function call by a more detailed

prior.b = list(Kmax = 2, priormuQ = "independentC",

delta = 1, xi = rep(0, 5), D = diag(rep(36, 5)),

zeta = 6, gD = rep(0.2, 5), hD = rep(0.278, 5))

Element prior.alpha

Further, the element prior.alpha of the objects mod[[1]] and mod[[2]] provides the hy-

perparameters of the prior distribution for the vector of fixed effects α =
(
α>1 , . . . ,α

>
R

)>
. In

our application, only a single fixed effect α = α3 which is the slope from the logit model for
the (third) longitudinal variable spiders, is included in the model. A normal prior distribu-
tion N (ξα, Cα) with a diagonal covariance matrix Cα is assumed for (generally a vector) α
(Komárek and Komárková 2013, Appendix A.11). We now check particular values of ξα, Cα.

R> print(mod[[1]]$prior.alpha) R> print(mod[[2]]$prior.alpha)
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$mean $var

alpha1.mean alpha1.var

0 10000

That is, apriori α3 ∼ N (0, 10 000). Note that alpha1 in the output indicates that it corre-
sponds to the first component of in general a vector of the fixed effects α. Nevertheless, for
notational clarity, subscript 3 was used for α in model (19) to indicate that it pertains to the
third marker. The values of the prior mean ξα and a diagonal of the prior covariance matrix
Cα might be set by inclusion of the prior.alpha argument in the GLMM_MCMC function call.
For example, the N (0, 10 000) prior for α3 is also achieved by using

prior.alpha = list(mean = 0, var = 10000)

Element prior.eps

Finally, the element prior.eps of the objects mod[[1]] and mod[[2]] provides the hyper-
parameters of the prior distribution for the subvector of a vector of dispersion parameters

φ =
(
φ1, . . . , φR

)>
which are unknown and not fixed by the choice of a particular expo-

nential family distribution. In our example, the only unknown dispersion parameter is φ1
which is the residual variance of the linear mixed model assumed for the (first) longitudinal
variable lbili. It is in general apriori assumed that different dispersion parameters are in-
dependent following an inverse Gamma distribution with a random scale parameter following
a Gamma hyperprior, see (Komárek and Komárková 2013, Appendix A.10). In our example,
φ−11 ∼ G(ζφ,1/2, γ

−1
φ,1/2) where γ−1φ,1 is random with a G(gφ,1, hφ,1) hyperprior. We examine

particular values of the hyperparameters ζφ,1, gφ,1, hφ,1 selected by the GLMM_MCMC routine
using the guidelines given in Komárek and Komárková (2013, Appendix A).

R> print(mod[[1]]$prior.eps) R> print(mod[[2]]$prior.eps)

$zeta $g $h

zeta1 g1 h1

2 0.2 2.76

That is, ζφ,1 = 2, gφ,1 = 0.2, hφ,1 = 2.76. The same values can be explicitly chosen by the
user by adding the argument prior.eps in the GLMM_MCMC function call as

prior.eps = list(zeta = 2, g = 0.2, h = 2.76)

A.3. Initial values

To start the MCMC simulation, initial values for the model parameters θ =
(
w>, ξ>1 , . . . , ξ

>
K ,

ξ>
)>

, for the latent quantities which are the random effect values b1, . . . , bN , and the com-
ponent allocations u1, . . . , uN and also for the random hyperparameters γb,1, . . . , γb,5 (see
prior.b paragraph of Section A.2) and γφ,1 (see prior.eps paragraph of Section A.2) must
be given. Reasonable initial values are automatically selected by the function GLMM_MCMC and
are stored as init.b, init.alpha and init.eps components of the objects mod[[1]] and
mod[[2]], pertaining to the first and the second sampled chain respectively. This automatic
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selection is based on the results obtained from fitting separately the R GLMM’s from as-
sumption (A1) in Section 2.1 while assuming a classical one-component normal distribution
for the random effects using the method of maximum-likelihood (ML) by the mean of the
lmer or glmer functions from the R package lme4 (Bates et al. 2014). In a sequel, let α0

ML,

β0
ML =

(
β0ML,1, . . . , β

0
ML,5

)>
, d0

ML =
(
dML,1, . . . , dML,5

)>
, σ0ML,1 be vectors of lmer/glmer

ML estimates of the fixed effects, the means of the random effects, the standard deviations
of the random effects, and the residual standard deviation (from the Gaussian model for the
logarithmic bilirubin), respectively. Further, let B0

ML be a N × 5 matrix with lmer/glmer
based empirical Bayes estimates of the individual random effects. Below, we explore in more
detail the initial values and describe in more detail the mechanism for their default generation.

Element init.b

First, the element init.b contains the initial values for the mixture related parameters w,
µ1, . . . ,µK , D1, . . . ,DK , and also for the random effect values b1, . . . ,bN , and the component
allocations u1, . . . , uN . These for the first chain are seen in R having invoked the following
code.

R> print(mod[[1]]$init.b)

$b

b1 b2 b3 b4 b5

1 -0.0458 0.01739 5.38 -0.022628 1.836

2 0.2412 0.01120 5.05 -0.016395 -0.490

3 0.4898 0.01828 5.37 0.004224 1.839

4 0.8811 0.02079 4.89 -0.016732 -0.505

5 -0.2104 0.00407 5.70 -0.000319 -3.751

...

$K $w $mu $Sigma

[1] 2 w1 w2 m1 m2 m3 m4 m5 m1 m2 m3 m4 m5

0.5 0.5 j1 -1 -1 -1 -1 -1 j1.1 1 0 0 0 0

j2 1 1 1 1 1 j1.2 0 1 0 0 0

j1.3 0 0 1 0 0

j1.4 0 0 0 1 0

j1.5 0 0 0 0 1

j2.1 1 0 0 0 0

j2.2 0 1 0 0 0

j2.3 0 0 1 0 0

j2.4 0 0 0 1 0

j2.5 0 0 0 0 1

$Li

Li1.1.1 Li1.2.1 Li1.3.1 Li1.4.1 Li1.5.1 Li1.2.2 Li1.3.2 Li1.4.2 Li1.5.2

1 0 0 0 0 1 0 0 0

Li1.3.3 Li1.4.3 Li1.5.3 Li1.4.4 Li1.5.4 Li1.5.5 Li2.1.1 Li2.2.1 Li2.3.1

1 0 0 1 0 1 1 0 0

Li2.4.1 Li2.5.1 Li2.2.2 Li2.3.2 Li2.4.2 Li2.5.2 Li2.3.3 Li2.4.3 Li2.5.3
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0 0 1 0 0 0 1 0 0

Li2.4.4 Li2.5.4 Li2.5.5

1 0 1

$gammaInv

gammaInv1 gammaInv2 gammaInv3 gammaInv4 gammaInv5

6 6 6 6 6

$df

df1 df2

1000 1000

$r

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

2 1 1 1 1 1 1 1 1 1 1 2 1 1 1

...

Partially different initial values for the second sampled chain can be seen by invoking (output
not shown):

R> print(mod[[2]]$init.b)

First, mod[[*]]$init.b$b is a matrix with initial values of the individual random effects
b1, . . . ,bN in rows. For the first chain (see output above), this is by default equal to the
empirical Bayes estimates B0

ML obtained from the initial lmer/glmer fits. For the second
chain, the initial values of the random effects are the values from the matrix B0

ML perturbed
by normal random variables with a zero mean and the standard deviation equal to the 0.1
multiple of an appropriate element of the vector d0

ML (random effects standard deviations
from the initial lmer/glmer fits). Namely, the initial values of the random effect vectors in
the second chain of the first five subjects are as follows.

R> print(mod[[2]]$init.b$b[1:5,])

b1 b2 b3 b4 b5

1 -0.1337 0.01788 5.41 -0.02147 1.797

2 0.3134 0.01357 5.03 -0.01637 -0.494

3 0.3802 0.02096 5.39 0.00386 1.659

4 0.9556 0.02134 4.89 -0.01804 0.192

5 -0.0974 0.00384 5.70 -0.00071 -3.665

Second, mod[[*]]$init.b$K stores the information on the number of mixture components K
which is constantly equal to two in our example.

Third, mod[[*]]$init.b$w gives the initial values of the mixture weights w =
(
w1, w2

)>
.

For both chains, these are by default all equal to 1/K. That is, w1 = w2 = 1/2 in our case.

The initial value for the shifted-scaled mixture means µ∗1 and µ∗2 are shown in rows of a matrix
mod[[*]]$init.b$mu. By default, initials for the lth components, l = 1, . . . , 5, of µ∗1, . . . ,µ

∗
K
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in the first chain are chosen equidistantly on intervals starting and ending at

µlowl =
β0ML,l − sl

Sl
− 3

d0ML,l

Sl
+

6d0ML,l

(K + 1)Sl

µuppl =
β0ML,l − sl

Sl
+ 3

d0ML,l

Sl
−

6d0ML,l

(K + 1)Sl

 l = 1, . . . , 5. (27)

Due to the fact that in our illustration also the shift vector s and the scale matrix S were chosen
automatically (see Section A.1) which leads to s = β0

ML and S = diag(d0
ML), the initial values

of the shifted-scaled mixture means with K = 2 are µ∗1 =
(
−1,−1,−1,−1,−1,−1

)>
and

µ∗2 =
(
1, 1, 1, 1, 1, 1

)>
. To create the initial values for the second chain, the same procedure is

applied while in (27) replacing for each l = 1, . . . , 5, β0ML,l by a normal N
(
β0ML,l, SE(β0ML,l)

)
random variable, and replacing d0ML,l by d1ML,l = U · d0ML,l, where U is a random variable
with the uniform distribution on interval (0.9, 1.1). This leads to the following initial values
of the shifted-scaled mixture means for the second chain:

R> print(mod[[2]]$init.b$mu)

m1 m2 m3 m4 m5

j1 -1.10 -0.942 -1.108 -1.01 -1.15

j2 1.01 1.054 0.985 1.04 1.01

The initial values for the scaled mixture covariance matrices D∗1 and D∗2 are shown as blocks
of mod[[*]]$init.b$Sigma. By default, for the first chain, the initial values are

D∗k = diag
(
(d0ML,1/S1)

2, . . . , (d0ML,5/S5)
2
)
, k = 1, . . . ,K, (28)

which in our case leads to D∗1 = D∗2 = I5. To get the default initial values for the second
chain, values of d0ML,l, l = 1, . . . , 5 in (28) are replaced by d1ML,l which leads to D∗1 = D∗2 =
diag(1.11, 0.996, 1.10, 1.05, 1.16). We can see this in R using

R> print(mod[[2]]$init.b$Sigma)

m1 m2 m3 m4 m5

j1.1 1.11 0.000 0.0 0.00 0.00

j1.2 0.00 0.996 0.0 0.00 0.00

j1.3 0.00 0.000 1.1 0.00 0.00

j1.4 0.00 0.000 0.0 1.05 0.00

j1.5 0.00 0.000 0.0 0.00 1.16

j2.1 1.11 0.000 0.0 0.00 0.00

j2.2 0.00 0.996 0.0 0.00 0.00

j2.3 0.00 0.000 1.1 0.00 0.00

j2.4 0.00 0.000 0.0 1.05 0.00

j2.5 0.00 0.000 0.0 0.00 1.16

Further, mod[[*]]$init.b$Li shows the lower triangles of the Cholesky factors of the inverted
initial scaled covariance matrices D∗1

−1, D∗2
−1 stacked in a vector.
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Furthermore, mod[[*]]$init.b$gammaInv are the initial values for the hyperparameters
γ−1b,1 , . . . , γ

−1
b,5 (see the prior.b paragraph of Section A.2). For the first chain, these are by

default equal to ζb
(
d0ML,l/Sl

)2
, leading to γ−1b,l = 6, l = 1, . . . , 5 in our application. For the

second chain, the initials equal ζb
(
d1ML,l/Sl

)2
, l = 1, . . . , 5, leading to γ−1b,1 = 6.64, γ−1b,2 = 5.98,

γ−1b,3 = 6.57, γ−1b,4 = 6.31, γ−1b,5 = 6.96, which is seen in R using

R> print(mod[[2]]$init.b$gammaInv)

gammaInv1 gammaInv2 gammaInv3 gammaInv4 gammaInv5

6.64 5.98 6.57 6.31 6.96

The value of the element mod[[*]]$init.b$df does not have any influence on the calculation
and it is included in the object only for compatibility with some other functionality of the
mixAK package.

Finally, mod[[*]]$init.b$r is a vector of the initial values of the component allocations
u1, . . . , uN . For each subject i, i = 1, . . . , N , the initial value of ui is by default equal to g(i)
for which the density of the conditional distribution Bi

∣∣Ui = g(i), Equation 5, is maximal at
the initial values of the remaining parameters.

Element init.alpha

The element mod[[*]]$init.alpha contains the initial values for the vector of the fixed
effects α. It is by default equal to α0

ML from the initial lmer/glmer fits for the first chains,
i.e., α = α3 = 0.0256. For the second chain the initial value of each element of the fixed
effect vector α is by default equal to the normal random variable with the mean given by the
corresponding element of the α0

ML vector and the standard deviation equal to the standard
error of the corresponding element of the α0

ML vector, leading to α = α3 = 0.0324 in our
application. In R:

R> print(mod[[1]]$init.alpha) R> print(mod[[2]]$init.alpha)

alpha1 alpha1

0.0256 0.0324

Element init.eps

Finally, mod[[*]]$init.eps holds the initial values for the parameters related to the GLMM
dispersion parameters, in our case the residual variance φ1 from the linear mixed model
for the first marker lbili and its random hyperparameter γ−1φ,1 (see prior.eps paragraph

of Section A.1). The initial value of the residual standard deviation σ1 =
√
φ1 from the

model for logarithmic bilirubin is for the first chain by default equal to σ0ML,1 which is in our

application equal to 0.317. The initial of the random hyperparameter γ−1φ,1 for the first chain

equals by default ζφ,1 (σ0ML,1)
2, i.e., γ−1φ,1 = 0.202. For the second chain, the initial value of

the parameter σ1 equals U · σ0ML,1, and the initial value of the hyperparameter γ−1φ,1 equals

ζφ,1 (U · σ0ML,1)
2, where U is the random variable with the uniform distribution on (0.9, 1.1).

This leads to the second set of initials being σ1 = 0.301, γ−1φ,1 = 0.181. To see the initial values
in R, we invoke
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R> print(mod[[1]]$init.eps) R> print(mod[[2]]$init.eps)

$sigma $gammaInv $sigma $gammaInv

sigma1 gammaInv1 sigma1 gammaInv1

0.317 0.202 0.301 0.181

User-defined initial values
The user is also able to define his/her own initial values for all or a subset of model parame-
ters by defining the lists with the same structure as mod[[1]]$init.b, mod[[2]]$init.b,
mod[[1]]$init.alpha, mod[[2]]$init.alpha, mod[[1]]$init.eps, mod[[2]]$init.eps,
respectively, and using these lists as additional arguments init.b, init2.b (where only
either Sigma or Li component is sufficient to specify the initial values for mixture covari-
ance matrices), init.alpha, init2.alpha, init.eps, init2.eps in the call to GLMM_MCMC

function. At the same time, the user does not have to specify the initial values for all sets
of parameters as missing components are initialized using the default procedures described
above.

Additionally, the objects mod[[1]] and mod[[2]] contain components:

� state.first.b,

� state.last.b,

� state.first.alpha,

� state.last.alpha,

� state.first.eps,

� state.last.eps,

which have the same structure as the corresponding init.* components (the state.first.b

and state.last.b components contain additionally an element Q which holds the lower tri-
angles of the inverted scaled mixture covariance matrices stacked in a vector). Finally, the
state.first.* components contain the values of the chain at the first saved (after burn-in)
MCMC iteration, the state.last.* components contain the last saved values of the chain.
All of them can be directly supplied as corresponding init.* arguments to the GLMM_MCMC

function when one wishes to re-start the MCMC simulation either from the end of the original
burn-in period or from the end of currently finished MCMC simulation. To illustrate this and
also the explicit specification of the hyperparameters of the prior distribution, shift vector s
and scale matrix S, we generate a sample of 1 000 values, again with 1:10 thinning, starting
from the last MCMC iteration saved in the mod object.

R> set.seed(20072011)

R> modContinue <- GLMM_MCMC(y = PBC910[, c("lbili", "platelet", "spiders")],

+ dist = c("gaussian", "poisson(log)", "binomial(logit)"),

+ id = PBC910[, "id"],

+ x = list(lbili = "empty",

+ platelet = "empty",

+ spiders = PBC910[, "month"]),

+ z = list(lbili = PBC910[, "month"],
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+ platelet = PBC910[, "month"],

+ spiders = "empty"),

+ random.intercept = rep(TRUE, 3),

+ scale.b = list(shift = c( 0.31516, 0.00765, 5.52621,

+ -0.00663, -2.74954),

+ scale = c(0.8645, 0.0201, 0.3486, 0.0157, 3.2285)),

+ prior.b = list(Kmax = 2, priormuQ = "independentC",

+ delta = 1, xi = rep(0, 5), D = diag(rep(36, 5)),

+ zeta = 6, gD = rep(0.2, 5), hD = rep(0.278, 5)),

+ prior.alpha = list(mean = 0, var = 10000),

+ prior.eps = list(zeta = 2, g = 0.2, h = 2.76),

+ init.b = mod[[1]]$state.last.b,

+ init2.b = mod[[2]]$state.last.b,

+ init.alpha = mod[[1]]$state.last.alpha,

+ init2.alpha = mod[[2]]$state.last.alpha,

+ init.eps = mod[[1]]$state.last.eps,

+ init2.eps = mod[[2]]$state.last.eps,

+ nMCMC = c(burn = 0, keep = 1000, thin = 10, info = 100),

+ parallel = TRUE)

B. Posterior samples

This appendix shows details concerning the storage of the posterior samples in the object from
the call to the GLMM_MCMC function. Analogously to Appendix A, everything will be exemplified
on the object mod obtained by running the code shown on page 13. As it is indicated in
Section 3.5, the two generated posterior samples of the model parameters and some additional
derived quantities are stored as certain elements of mod[[1]] (the first sampled chains) and
mod[[2]] (the second sampled chain): w_b, mu_b, Sigma_b, Q_b, Li_b, alpha, sigma_eps,
gammaInv_b, gammaInv_eps, mixture_b, Deviance, Cond.Deviance. All of them are vectors
or matrices where each value of each row corresponds to one MCMC iteration and each column
to one parameter or an element of a vector parameter. In the reminder of this part, we explore
in more detail the values of the first sampled chain which are kept in the mod[[1]] object.
Getting the values of the second chain from the mod[[2]] object is then analogous. In the
illustrative code, we shall print in most cases only the first three sampled values stored in the
first three rows of the respective matrix.

B.1. Mixture parameters

With respect to the mixture related parameters (mixture weights w, means µ1, . . . ,µK and
covariance matrices D1, . . . ,DK). Remember that K = 2 in our example. We first check the
element w_b holding the sampled values of the mixture weights w:

R> print(mod[[1]]$w_b[1:3,])

w1 w2

[1,] 0.638 0.362
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[2,] 0.564 0.436

[3,] 0.545 0.455

Similarly, we find the element mu_b with the sampled values of the shifted-scaled mixture
means µ∗1, . . . ,µ

∗
K :

R> print(mod[[1]]$mu_b[1:3,])

mu.1.1 mu.1.2 mu.1.3 mu.1.4 mu.1.5 mu.2.1 mu.2.2 mu.2.3 mu.2.4

[1,] -0.663 -0.0600 0.175 -0.0171 -0.330 1.070 -0.221 -0.273 -0.0418

[2,] -0.662 -0.2093 0.192 0.0824 -0.514 0.735 0.329 -0.395 0.2469

[3,] -0.738 -0.0698 0.238 0.0515 -0.334 0.605 0.189 -0.344 0.2224

mu.2.5

[1,] 0.511

[2,] 0.521

[3,] 0.677

The first five columns contain the mean vector µ∗1 for the first mixture component, the re-
maining five columns contain the mean vector µ∗2 of the second mixture component. Further,
the element Sigma_b contains the sampled values of the lower triangles of the scaled mixture
covariance matrices D∗1,D

∗
2:

R> print(mod[[1]]$Sigma_b[1:3,])

Sigma1.1.1 Sigma1.2.1 Sigma1.3.1 Sigma1.4.1 Sigma1.5.1 Sigma1.2.2

[1,] 0.212 0.0584 -0.0751 0.00354 0.273 0.206

[2,] 0.142 0.1112 -0.0582 -0.09732 0.117 0.293

[3,] 0.139 0.0430 -0.0107 -0.06589 -0.136 0.152

Sigma1.3.2 Sigma1.4.2 Sigma1.5.2 Sigma1.3.3 Sigma1.4.3 Sigma1.5.3

[1,] 0.00142 -0.0795 -0.0144 0.791 -0.0567 -0.0664

[2,] 0.07909 -0.1037 0.1962 0.583 -0.0116 0.1382

[3,] -0.01655 -0.0190 0.0665 0.704 0.0674 0.1120

Sigma1.4.4 Sigma1.5.4 Sigma1.5.5 Sigma2.1.1 Sigma2.2.1 Sigma2.3.1

[1,] 0.531 0.224 1.244 0.624 -0.0831 0.277

[2,] 0.405 -0.117 1.207 0.676 -0.1997 0.379

[3,] 0.353 0.166 0.887 0.682 0.1028 0.094

Sigma2.4.1 Sigma2.5.1 Sigma2.2.2 Sigma2.3.2 Sigma2.4.2 Sigma2.5.2

[1,] -0.000169 -0.00384 2.38 -0.0653 0.0559 0.248

[2,] -0.081421 -0.00740 2.75 -0.0554 0.3833 -0.141

[3,] -0.203883 0.14186 2.03 -0.2473 0.1260 -0.121

Sigma2.3.3 Sigma2.4.3 Sigma2.5.3 Sigma2.4.4 Sigma2.5.4 Sigma2.5.5

[1,] 1.77 0.2375 -0.227 2.20 -0.271 0.621

[2,] 1.73 -0.0879 -0.340 1.74 -0.171 0.897

[3,] 1.19 -0.2495 0.191 1.92 -0.424 0.795

The first 15 columns comprise the lower triangles of the sampled matrices D∗1, the remaining
15 columns comprise the lower triangles of the sampled matrices D∗2. Similarly, elements
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Q_b and Li_b (not printed) contain the sampled values of the lower triangles of the inverted
mixture covariance matrices D∗1

−1,D∗2
−1 and their Cholesky factors, respectively. All above

mentioned mixture related parameters are saved as sampled, i.e., without applying any rela-
beling algorithm.

To get the (relabeled) samples of the mixture parameters (on the original – data – scale)
and possibly some derivatives like standard deviations and correlation coefficients based on
the mixture covariance matrices, a function NMixChainComp() can be used. The chains with
relabeled mixture weights are obtained using:

R> wSamp <- NMixChainComp(mod[[1]], relabel = TRUE, param = "w_b")

R> print(wSamp[1:3,])

w1 w2

[1,] 0.638 0.362

[2,] 0.564 0.436

[3,] 0.545 0.455

Setting the argument param to a value of "mu_b" provides the (relabeled) sample of the
mixture means µ1, . . . ,µK :

R> muSamp <- NMixChainComp(mod[[1]], relabel = TRUE, param = "mu_b")

R> print(muSamp[1:3,])

mu1.1 mu1.2 mu1.3 mu1.4 mu1.5 mu2.1 mu2.2 mu2.3 mu2.4

[1,] -0.258 0.00645 5.59 -0.00690 -3.82 1.240 0.00322 5.43 -0.00729

[2,] -0.257 0.00345 5.59 -0.00534 -4.41 0.951 0.01426 5.39 -0.00277

[3,] -0.323 0.00625 5.61 -0.00583 -3.83 0.838 0.01144 5.41 -0.00315

mu2.5

[1,] -1.101

[2,] -1.069

[3,] -0.563

Analogously, the param values of "var_b", "sd_b" and "cor_b" lead to the relabeled samples
of mixture variances, standard deviations and correlations, respectively, derived from the
mixture covariance matrices D1, . . . ,DK :

R> varSamp <- NMixChainComp(mod[[1]], relabel = TRUE, param = "var_b")

R> print(varSamp[1:3,])

var1.1 var1.2 var1.3 var1.4 var1.5 var2.1 var2.2 var2.3

[1,] 0.158 8.30e-05 0.0962 1.30e-04 12.97 0.466 0.000958 0.215

[2,] 0.106 1.18e-04 0.0708 9.92e-05 12.58 0.505 0.001109 0.211

[3,] 0.104 6.13e-05 0.0855 8.66e-05 9.24 0.510 0.000819 0.145

var2.4 var2.5

[1,] 0.000539 6.47

[2,] 0.000425 9.35

[3,] 0.000470 8.28
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R> sdSamp <- NMixChainComp(mod[[1]], relabel = TRUE, param = "sd_b")

R> print(sdSamp[1:3,])

sd1.1 sd1.2 sd1.3 sd1.4 sd1.5 sd2.1 sd2.2 sd2.3 sd2.4 sd2.5

[1,] 0.398 0.00911 0.310 0.01141 3.60 0.683 0.0309 0.463 0.0232 2.54

[2,] 0.326 0.01086 0.266 0.00996 3.55 0.711 0.0333 0.459 0.0206 3.06

[3,] 0.323 0.00783 0.292 0.00930 3.04 0.714 0.0286 0.381 0.0217 2.88

R> corSamp <- NMixChainComp(mod[[1]], relabel = TRUE, param = "cor_b")

R> print(corSamp[1:3,])

cor1.2.1 cor1.3.1 cor1.4.1 cor1.5.1 cor1.3.2 cor1.4.2 cor1.5.2

[1,] 0.280 -0.1835 0.0106 0.532 0.00352 -0.240 -0.0285

[2,] 0.545 -0.2023 -0.4055 0.283 0.19151 -0.301 0.3300

[3,] 0.295 -0.0341 -0.2969 -0.386 -0.05059 -0.082 0.1810

cor1.4.3 cor1.5.3 cor1.5.4 cor2.2.1 cor2.3.1 cor2.4.1 cor2.5.1

[1,] -0.0874 -0.0669 0.276 -0.0683 0.264 -0.000144 -0.00618

[2,] -0.0238 0.1648 -0.167 -0.1464 0.350 -0.075167 -0.00950

[3,] 0.1351 0.1417 0.297 0.0873 0.104 -0.178338 0.19269

cor2.3.2 cor2.4.2 cor2.5.2 cor2.4.3 cor2.5.3 cor2.5.4

[1,] -0.0319 0.0244 0.2038 0.1205 -0.217 -0.232

[2,] -0.0254 0.1754 -0.0897 -0.0507 -0.272 -0.137

[3,] -0.1588 0.0639 -0.0951 -0.1649 0.196 -0.343

Finally, setting the param argument to "Sigma_b", "Q_b" and "Li_b" provides (relabeled)
samples of the lower triangles of the mixture covariance matrices D1, . . . ,DK , their inver-
sions D−11 , . . . ,D−1K and Cholesky decompositions of the inverted mixture covariance matri-
ces D−11 , . . . ,D−1K , respectively. As illustration, we create a relabeled sample of the mixture
covariance matrices D1, . . . ,DK and print the first three values.

R> DSamp <- NMixChainComp(mod[[1]], relabel = TRUE, param = "Sigma_b")

R> print(DSamp[1:3,])

Sigma1.1.1 Sigma1.2.1 Sigma1.3.1 Sigma1.4.1 Sigma1.5.1 Sigma1.2.2

[1,] 0.158 0.001014 -0.02262 0.000048 0.762 8.30e-05

[2,] 0.106 0.001931 -0.01755 -0.001317 0.327 1.18e-04

[3,] 0.104 0.000746 -0.00322 -0.000892 -0.379 6.13e-05

Sigma1.3.2 Sigma1.4.2 Sigma1.5.2 Sigma1.3.3 Sigma1.4.3 Sigma1.5.3

[1,] 9.96e-06 -2.50e-05 -0.000935 0.0962 -0.000309 -0.0747

[2,] 5.53e-04 -3.26e-05 0.012715 0.0708 -0.000063 0.1555

[3,] -1.16e-04 -5.97e-06 0.004307 0.0855 0.000368 0.1260

Sigma1.4.4 Sigma1.5.4 Sigma1.5.5 Sigma2.1.1 Sigma2.2.1 Sigma2.3.1

[1,] 1.30e-04 0.01134 12.97 0.466 -0.00144 0.0836

[2,] 9.92e-05 -0.00590 12.58 0.505 -0.00347 0.1141

[3,] 8.66e-05 0.00839 9.24 0.510 0.00178 0.0283

Sigma2.4.1 Sigma2.5.1 Sigma2.2.2 Sigma2.3.2 Sigma2.4.2 Sigma2.5.2
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[1,] -2.29e-06 -0.0107 0.000958 -0.000457 1.76e-05 0.01604

[2,] -1.10e-03 -0.0206 0.001109 -0.000388 1.20e-04 -0.00913

[3,] -2.76e-03 0.3959 0.000819 -0.001731 3.96e-05 -0.00784

Sigma2.3.3 Sigma2.4.3 Sigma2.5.3 Sigma2.4.4 Sigma2.5.4 Sigma2.5.5

[1,] 0.215 0.00130 -0.256 0.000539 -0.01369 6.47

[2,] 0.211 -0.00048 -0.382 0.000425 -0.00864 9.35

[3,] 0.145 -0.00136 0.215 0.000470 -0.02141 8.28

B.2. GLMM related parameters

The sampled values of the GLMM related parameters (fixed effects α1, . . . ,α3 and square
roots of dispersion parameters φ1, . . . , φR) are kept in the alpha and sigma_eps elements of
mod[[1]] and mod[[2]] objects. In our application, α = α3 (slope from the logit model for
the variable spiders) and the first three sampled values from the first chain are as follows.

R> print(mod[[1]]$alpha[1:3,])

[1] 0.00725 0.04123 0.01868

Further, φ = φ1 is the residual variance from the linear mixed model for the variable lbili

and the first three sampled values of σ1 =
√
φ1 from the first chain are the following.

R> print(mod[[1]]$sigma_eps[1:3,])

[1] 0.320 0.313 0.304

B.3. Random hyperparameters

The sampled values of the random hyperparameters γ−1b,1 , . . . , γ
−1
b,5 introduced in the prior.b

paragraph of Section A.2 are kept in the component gammaInv_b of the mod[[1]] and
mod[[2]] objects. Similarly, the sampled values of the random hyperparameter γ−1φ,1 intro-
duced in the prior.eps paragraph of Section A.2 are found in the gammaInv_eps element
(code to print their values not shown).

B.4. Moments of random effects

Element mixture_b of the objects mod[[1]] and mod[[2]] contains the posterior samples
of some characteristics of the unconditional distribution of random effects B1, . . . ,BN which
following Equations (1) and (5) is a normal mixture, i.e., for all i = 1, . . . , N :

Bi ∼
K∑
k=1

wkNq(µk, Dk). (29)
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The mean and the variance of the distribution (29) are given by Equations (10) and (11)
which can also be written in a more detailed form as

β = E
(
Bi; θ

)
=

K∑
k=1

wkµk,= s + S
K∑
k=1

wkµ
∗
k, (30)

D = VAR
(
Bi; θ

)
=

K∑
k=1

wk

{
Dk +

(
µk −

K∑
j=1

wjµj
)(
µk −

K∑
j=1

wjµj
)>}

,

= S

[ K∑
k=1

wk

{
D∗k +

(
µ∗k −

K∑
j=1

wjµ
∗
j

)(
µ∗k −

K∑
j=1

wjµ
∗
j

)>}]
S>. (31)

Note that the vector β express the mean effect (in a total population) of covariates a subject
specific effect of which is expressed by the random effects. The first three sampled values of
the first chain stored in the element mixture_b of the object mod[[1]] are

R> print(mod[[1]]$mixture_b[1:3,])

b.Mean.1 b.Mean.2 b.Mean.3 b.Mean.4 b.Mean.5 b.SD.1 b.Corr.2.1

1 0.284 0.00528 5.53 -0.00704 -2.83 0.888 -0.0557

2 0.270 0.00817 5.50 -0.00422 -2.95 0.800 0.1448

3 0.206 0.00862 5.52 -0.00461 -2.34 0.789 0.1691

b.Corr.3.1 b.Corr.4.1 b.Corr.5.1 b.SD.2 b.Corr.3.2 b.Corr.4.2 b.Corr.5.2

1 -0.1132 -0.00702 0.456 0.0200 -0.00558 -0.0279 0.0452

2 -0.0695 -0.03671 0.392 0.0241 -0.04429 0.1094 0.1343

3 -0.1710 -0.07595 0.342 0.0203 -0.15619 0.0553 0.0433

b.SD.3 b.Corr.4.3 b.Corr.5.3 b.SD.4 b.Corr.5.4 b.SD.5

1 0.380 0.0450 -0.17830 0.0167 0.0349 3.51

2 0.377 -0.0637 -0.17598 0.0156 -0.0857 3.73

3 0.351 -0.0976 0.00163 0.0162 -0.0549 3.38

The columns b.Mean.* hold a posterior sample for the elements of the vector β, Equation (30),
the columns b.SD.* and b.Corr.*.* hold posterior samples for standard deviations and
correlation coefficients, respectively, derived from the covariance matrix D, Equation (31).

B.5. Model deviance

Finally, also the posterior sample of the observed data model deviance L(θ) (Equation 12) is
available as the component Deviance of the objects mod[[1]] and mod[[2]] (first ten values
of the deviance sample based on the first chain are printed):

R> print(mod[[1]]$Deviance[1:10], digits = 6)

[1] 14086.4 14095.9 14113.7 14097.7 14109.2 14102.3 14110.2 14098.9

[9] 14109.4 14096.8



Arnošt Komárek, Lenka Komárková 63

Note that the integral in (8) needed to calculate the deviance at each MCMC iteration cannot
be evaluated analytically and the function GLMM_MCMC uses the Laplace approximation to
calculate numerically its value.
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