Continuous weighted finite automata Jarkko Kari¹, Alexandr Kazda² and Paula Steinby¹ ¹University of Turku, Finland ²Charles University in Prague, Czech Republic

Weighted finite automata (WFA) over \mathbb{R} are finite automata with transitions labelled by real numbers. Weighted finite automata have many nice applications in natural language processing, image manipulation and similar areas.

WFA provide a natural and intrinsic description for some self-similar real functions. We study continuity of WFA from the algorithmic point of view.

Weighted Finite Automata

A weighted finite automaton (WFA) \mathcal{A} over the alphabet Σ is a set of states $1, 2, \ldots, n$ together with $n \times n$ matrices A_a , one for each $a \in \Sigma$, a row vector I and a column vector F (both of dimension n).

WFA: a specimen

Real functions defined by WFA can be quite complicated beasts. Consider the following automaton:

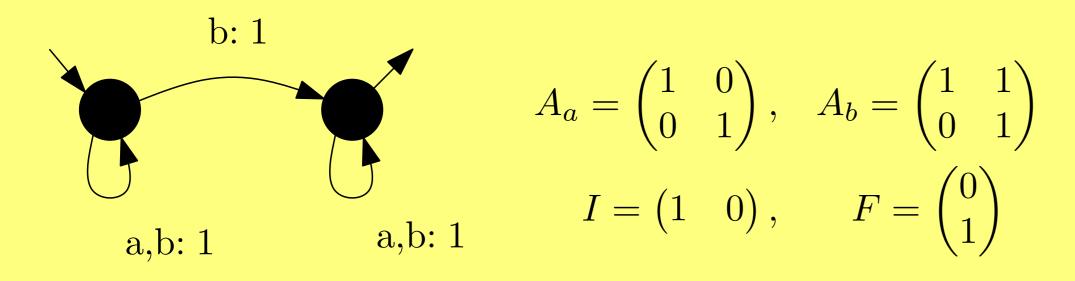
$$A_{0} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & 3\\ \frac{1}{3} & \frac{1}{3} & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad A_{1} = \begin{pmatrix} \frac{2}{3} & 0 & 5\\ -\frac{1}{3} & \frac{2}{3} & 6\\ 0 & 0 & 1 \end{pmatrix}$$
$$I = (1, 0, 0), \qquad F = \begin{pmatrix} 10\\ 6\\ 1 \end{pmatrix}$$

This automation defines the continuous real function pictured below:

16

For v word of length m, let $F_{\mathcal{A}}(v) = I \cdot A_{v_1} \cdots A_{v_m} \cdot F$. This is the word function defined by \mathcal{A} .

In the example below, you can see the automation \mathcal{A} over the alphabet $\Sigma = \{a, b\}$ such that $F_{\mathcal{A}}(v)$ is the number of b's in the word v. We can depict the automaton by a labeled graph (to the left) or by giving its matrices and vectors (to the right).



Given a WFA \mathcal{A} we define its ω -function and (for $\Sigma = \{0, 1\}$) its real function as:

 $f_{\mathcal{A}}(w) = \lim_{k \to \infty} F_{\mathcal{A}}(pref_k(w))$ $\hat{f}_{\mathcal{A}}(x) = f_{\mathcal{A}}(bin(x)),$

where $x \in [0, 1)$ and the function $bin : [0, 1) \to \Sigma^{\omega}$ returns the binary expansion that does not use 1^{∞} .



Average preserving WFA An automaton \mathcal{A} is called *average preserving* (ap), if

$$\sum_{a \in \Sigma} A_a F = |\Sigma| F.$$

Ap automata are a quite rich class; any continuous ω -function definable by some WFA can be defined by an ap WFA.

Complexity of WFA problems

THE AP-WFA UNIFORM CONTINUITY PROBLEM **Input:** An average preserving WFA \mathcal{A} (with rational coefficients) over the binary alphabet $\Sigma = \{0, 1\}$. **Question:** Are both $f_{\mathcal{A}}$ and $\hat{f}_{\mathcal{A}}$ everywhere continuous? THE MATRIX PRODUCT STABILITY PROBLEM **Input:** A finite set $\{B_a | a \in \Sigma\}$ of $n \times n$ matrices with rational entries. **Question:** Is it true for all $w \in \Sigma^{\omega}$ that

 $\lim_{k \to \infty} B_{w_1} B_{w_2} \cdots B_{w_k} = 0?$

Complexity: Unknown, probably not recursive (although a semi-algorithm verifying stability exists).

102-1100

0

Our result

Decision problems MATRIX PRODUCT STABILITY and AP-WFA UNIFORM CONTINUITY can be algorithmically reduced to each other.