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Disclaimer

The results presented are not mine

CS pioneers of algebraic PCSP: Per Austrin, Joshua Brakensiek,
Venkatesan Guruswami, and Johan Håstad

Coming soon: Jakub Buĺın, Jakub Opřsal. Algebraic Approach to
Promise Constraint Satisfaction

Any errors, typos etc. in the presentation belong to me
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Promise Constraint Satisfaction

A,B are relational structures, A→ B (wlog A ⊆ B)

PCSP(A,B): Input relational structure C
Output “Yes” if C→ A
Output “No” if C 6→ B

Example: PCSP(K3,K4).

PCSP(K3,K4) is NP-hard because all of its polymorphisms are
“almost projections”
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Pol(A,B)

Pol(A,B) are all polymorphisms from A to B
Polymorphism f : An → B sends RA into RB

Pol(A,B) determines complexity of PCSP(A,B) up to logspace
reductions

Can’t compose, but can take minors:

f (x1, x2, x3, x4, x5) ∈ Pol(A,B)⇒ f (x2, x2, x16, x4, x5) ∈ Pol(A,B)

If A ⊆ B then Pol(A,B) contains all projections

πi (x1, . . . , xn) = xi
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Minions

A minor closed set clonoid minion C on sets A,B is a nonempty
family of operations from A to B closed under taking minors

Taking minors: σ : [n]→ [m] sends n-ary f to m-ary f σ where

f σ(x1, . . . , xm) = f (xσ(1), . . . , xσ(n))

Each Pol(A,B) is a minion
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Minion homomorphisms

φ : C → D preserves arity and commutes with taking minors

Another view: homomorphism sends identities of C to identities of D
Example:

f (x , x , y) ≈ g(x , y , y , z)⇒ φ(f )(x , x , y) ≈ φ(g)(x , y , y , z)

Jakub Buĺın, Jakub Opřsal: For A,B,A′,B′ finite relational structures
Pol(A,B)→ Pol(A′,B′) gives a poly-time reduction from
PCSP(A′,B′) to PCSP(A,B)
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The reduction I

Have: Pol(A,B)→ Pol(A′,B′)

Want: PCSP(A′,B′) reduces to PCSP(A,B)

PCSP(A,B) is equivalent to a different promise problem involving
“functional equations” (Maltsev conditions).

Example reduction: PCSP(K3,K4) and input graph

a b c

Watch the blackboard!

G→ K3 ⇒ solution by projections

G 6→ K4 ⇒ no solution in Pol(K3,K4)
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The reduction II

Have: h : Pol(A,B)→ Pol(A′,B′)

Want: PCSP(A′,B′) reduces to PCSP(A,B)

Input “functional equation” system

t(x0, x0, x1, x2) ≈ s(x0, x3)

...

Given a system of functional equations, answer yes if the system has a
solution by projections and no if it has no solution in Pol(A,B)

This problem is equivalent to PCSP(A,B) (takes work)

Existence of h ⇒ if no solution in Pol(A′,B′) then no solution in
Pol(A,B)
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Applications

Identities in minions determine PCSP complexity

Pol(K3,K4)→ Pol(K3,K3) (nontrivial) so PCSP(K3,K4) is NP-hard.

If Pol(A,B) maps to a minion of operations of bounded arity then
PCSP(A,B) is NP-hard

More on the way. . .
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Going beyond homomorphisms

Pol(A,B)→ bounded arity minion ⇒ PCSP(A,B) is NP-hard

Libor Barto, Jakub Buĺın, Andrei Krokhin, Jakub Opřsal: NP-hard
PCSP whose polymorphisms don’t map into a bounded arity minion

Our best source of hardness: Reduction from GapLabelCover (variant
of PCP) to PCSP.

I weakened homomorphisms to ε-homomorphisms and tinkered with
them, but it did not work out.

TODO: Make sense of PCSP complexity.
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Thank you for your attention.
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