How to decide absorption

Alexandr Kazda (joint work with Libor Barto)

Department of Mathematics Vanderbilt University

October 5th 2013

AK & LB (Vanderbilt)

How to decide absorption

October 5th 2013 1 / 10

Definition (Libor Barto, Marcin Kozik)

Let $\mathbf{B} \leq \mathbf{A}$ be algebras. We say that \mathbf{B} absorbs \mathbf{A} if there exists a term t in \mathbf{A} such that for any $b_1, \ldots, b_n \in B, a \in A$ we have:

$$t(a, a, a, \dots, a) = a$$

$$t(a, b_2, b_3, \dots, b_{n-1}, b_n) \in B$$

$$t(b_1, a, b_3, \dots, b_{n-1}, b_n) \in B$$

$$\vdots$$

$$t(b_1, b_2, b_3, \dots, b_{n-1}, a) \in B$$

Definition (Libor Barto, Marcin Kozik)

Let $\mathbf{B} \leq \mathbf{A}$ be algebras. We say that \mathbf{B} absorbs \mathbf{A} if there exists a term t in \mathbf{A} such that for any $b_1, \ldots, b_n \in B, a \in A$ we have:

$$t(a, a, a, \dots, a) = a$$

 $t(a, b_2, b_3, \dots, b_{n-1}, b_n) \in B$
 $t(b_1, a, b_3, \dots, b_{n-1}, b_n) \in B$
 \vdots
 $t(b_1, b_2, b_3, \dots, b_{n-1}, a) \in B$

AK & LB (Vanderbilt)

- If 0 is the minimal element of a finite semilattice (L, ∧), then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If **A** is an algebra with a majority term *m*, then every singleton is an absorbing subalgebra; absorption term is *m*.
- If **A** is any algebra, then always $\mathbf{A} \leq \mathbf{A}$.
- If A is an abelian group, then A has no proper absorbing subalgebra.

- If 0 is the minimal element of a finite semilattice (L, ∧), then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If **A** is an algebra with a majority term *m*, then every singleton is an absorbing subalgebra; absorption term is *m*.
- If **A** is any algebra, then always $\mathbf{A} \leq \mathbf{A}$.
- If A is an abelian group, then A has no proper absorbing subalgebra.

- If 0 is the minimal element of a finite semilattice (L, ∧), then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If **A** is an algebra with a majority term *m*, then every singleton is an absorbing subalgebra; absorption term is *m*.
- If **A** is any algebra, then always $\mathbf{A} \trianglelefteq \mathbf{A}$.
- If **A** is an abelian group, then **A** has no proper absorbing subalgebra.

- If 0 is the minimal element of a finite semilattice (L, ∧), then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If **A** is an algebra with a majority term *m*, then every singleton is an absorbing subalgebra; absorption term is *m*.
- If **A** is any algebra, then always $\mathbf{A} \leq \mathbf{A}$.
- If **A** is an abelian group, then **A** has no proper absorbing subalgebra.

- If 0 is the minimal element of a finite semilattice (L, ∧), then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If **A** is an algebra with a majority term *m*, then every singleton is an absorbing subalgebra; absorption term is *m*.
- If **A** is any algebra, then always $\mathbf{A} \leq \mathbf{A}$.
- If A is an abelian group, then A has no proper absorbing subalgebra.

- Let **A** be an idempotent finite algebra. Then **A** has an NU term iff every singleton {*a*} absorbs **A**.
- Miklós Maróti, Libor Barto, Dmitriy Zhuk: We can decide whether a finite algebra **A** has an NU term.
- Problem: Given $\mathbf{B} \leq \mathbf{A}$, can we decide if $\mathbf{B} \leq \mathbf{A}$?
- Libor Barto, Jakub Bulín: Yes, if **A** is finitely related.
- What about if **A** is given by a finitely many operations instead?

- Let **A** be an idempotent finite algebra. Then **A** has an NU term iff every singleton {*a*} absorbs **A**.
- Miklós Maróti, Libor Barto, Dmitriy Zhuk: We can decide whether a finite algebra **A** has an NU term.
- Problem: Given $\mathbf{B} \leq \mathbf{A}$, can we decide if $\mathbf{B} \leq \mathbf{A}$?
- Libor Barto, Jakub Bulín: Yes, if **A** is finitely related.
- What about if **A** is given by a finitely many operations instead?

- Let **A** be an idempotent finite algebra. Then **A** has an NU term iff every singleton {*a*} absorbs **A**.
- Miklós Maróti, Libor Barto, Dmitriy Zhuk: We can decide whether a finite algebra A has an NU term.
- Problem: Given $\mathbf{B} \leq \mathbf{A}$, can we decide if $\mathbf{B} \leq \mathbf{A}$?
- Libor Barto, Jakub Bulín: Yes, if **A** is finitely related.
- What about if A is given by a finitely many operations instead?

- Let **A** be an idempotent finite algebra. Then **A** has an NU term iff every singleton {*a*} absorbs **A**.
- Miklós Maróti, Libor Barto, Dmitriy Zhuk: We can decide whether a finite algebra A has an NU term.
- Problem: Given $\mathbf{B} \leq \mathbf{A}$, can we decide if $\mathbf{B} \leq \mathbf{A}$?
- Libor Barto, Jakub Bulín: Yes, if **A** is finitely related.
- What about if A is given by a finitely many operations instead?

- Let A be an idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti, Libor Barto, Dmitriy Zhuk: We can decide whether a finite algebra A has an NU term.
- Problem: Given $\mathbf{B} \leq \mathbf{A}$, can we decide if $\mathbf{B} \leq \mathbf{A}$?
- Libor Barto, Jakub Bulín: Yes, if A is finitely related.
- What about if A is given by a finitely many operations instead?

- Let A be an idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti, Libor Barto, Dmitriy Zhuk: We can decide whether a finite algebra A has an NU term.
- Problem: Given $\mathbf{B} \leq \mathbf{A}$, can we decide if $\mathbf{B} \leq \mathbf{A}$?
- Libor Barto, Jakub Bulín: Yes, if **A** is finitely related.
- What about if A is given by a finitely many operations instead?

- Let $\mathbf{B} \trianglelefteq \mathbf{A}$ with absorption term t.
- We call (C, D) a blocker for **B** if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1,\ldots,x_n)\in C^n: \exists i, x_i\in D\}\leq A^n \text{ for every } n\in\mathbb{N}.$
- If $\mathbf{B} \trianglelefteq \mathbf{A}$, then there is no blocker for \mathbf{B} .

• Let $\mathbf{B} \trianglelefteq \mathbf{A}$ with absorption term t.

- We call (C, D) a blocker for **B** if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1,\ldots,x_n)\in C^n: \exists i, x_i\in D\}\leq A^n \text{ for every } n\in\mathbb{N}.$
- If $\mathbf{B} \trianglelefteq \mathbf{A}$, then there is no blocker for \mathbf{B} .

- Let $\mathbf{B} \leq \mathbf{A}$ with absorption term t.
- We call (C, D) a blocker for **B** if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1,\ldots,x_n)\in C^n: \exists i, x_i\in D\}\leq A^n \text{ for every } n\in\mathbb{N}.$

• If $\mathbf{B} \leq \mathbf{A}$, then there is no blocker for \mathbf{B} .

- Let $\mathbf{B} \leq \mathbf{A}$ with absorption term t.
- We call (C, D) a blocker for **B** if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1,\ldots,x_n)\in C^n: \exists i, x_i\in D\}\leq A^n \text{ for every } n\in\mathbb{N}.$
- If $\mathbf{B} \trianglelefteq \mathbf{A}$, then there is no blocker for \mathbf{B} .

- Given idempotent **A** with finitely many operations, we can test if there are no blockers for **B**.
- However, we can have no blockers and no absorption: Consider $\mathbf{A} = (\mathbb{Z}_2, m)$, where $m(x, y, z) = x + y + z \pmod{2}$.

- Given idempotent **A** with finitely many operations, we can test if there are no blockers for **B**.
- However, we can have no blockers and no absorption: Consider $\mathbf{A} = (\mathbb{Z}_2, m)$, where $m(x, y, z) = x + y + z \pmod{2}$.

- Given idempotent **A** with finitely many operations, we can test if there are no blockers for **B**.
- However, we can have no blockers and no absorption: Consider $\mathbf{A} = (\mathbb{Z}_2, m)$, where $m(x, y, z) = x + y + z \pmod{2}$.

- Weaker notion of absorption inspired by terms for congruence distributivity.
- Let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{J} \mathbf{A}$ if there exist idempotent terms d_0, d_1, \ldots, d_n such that:

$$\forall i = 0, \dots, n, \ d_i(B, A, B) \subset B$$
$$d_0(x, y, z) = x$$
$$d_i(x, y, y) = d_{i+1}(x, y, y) \text{ for } i \text{ even}$$
$$d_i(x, x, y) = d_{i+1}(x, x, y) \text{ for } i \text{ odd}$$
$$d_n(x, y, z) = z.$$

AK & LB (Vanderbilt)

• Weaker notion of absorption inspired by terms for congruence distributivity.

• Let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{J} \mathbf{A}$ if there exist idempotent terms d_0, d_1, \ldots, d_n such that:

$$\forall i = 0, \dots, n, \ d_i(B, A, B) \subset B$$

$$d_0(x, y, z) = x$$

$$d_i(x, y, y) = d_{i+1}(x, y, y) \text{ for } i \text{ even}$$

$$d_i(x, x, y) = d_{i+1}(x, x, y) \text{ for } i \text{ odd}$$

$$d_n(x, y, z) = z.$$

- Weaker notion of absorption inspired by terms for congruence distributivity.
- Let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{J} \mathbf{A}$ if there exist idempotent terms d_0, d_1, \ldots, d_n such that:

$$\forall i = 0, \dots, n, \ d_i(B, A, B) \subset B \\ d_0(x, y, z) = x \\ d_i(x, y, y) = d_{i+1}(x, y, y) \text{ for } i \text{ even} \\ d_i(x, x, y) = d_{i+1}(x, x, y) \text{ for } i \text{ odd} \\ d_n(x, y, z) = z.$$

AK & LB (Vanderbilt)

Putting it all together

Theorem

Let **A** be a finite idempotent algebra, $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ iff there is no blocker for **B** and $\mathbf{B} \leq \mathbf{J} \mathbf{A}$.

Corollary

We can decide $\mathbf{B} \leq \mathbf{A}$ algorithmically for idempotent algebras.

Putting it all together

Theorem

Let **A** be a finite idempotent algebra, $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ iff there is no blocker for **B** and $\mathbf{B} \leq \mathbf{J} \mathbf{A}$.

Corollary

We can decide $\mathbf{B} \trianglelefteq \mathbf{A}$ algorithmically for idempotent algebras.

Putting it all together

Theorem

Let **A** be a finite idempotent algebra, $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ iff there is no blocker for **B** and $\mathbf{B} \leq J \mathbf{A}$.

Corollary

We can decide $\mathbf{B} \trianglelefteq \mathbf{A}$ algorithmically for idempotent algebras.

- If **A** is not idempotent, we would also like to decide to absorption.
- Problem with taking the idempotent reduct: We might lose the generators of the clone of **A**.
- Imitating some of Dmitriy Zhuk's ideas should give us an algorithm anyway...

• If A is not idempotent, we would also like to decide to absorption.

- Problem with taking the idempotent reduct: We might lose the generators of the clone of **A**.
- Imitating some of Dmitriy Zhuk's ideas should give us an algorithm anyway...

- If A is not idempotent, we would also like to decide to absorption.
- Problem with taking the idempotent reduct: We might lose the generators of the clone of **A**.
- Imitating some of Dmitriy Zhuk's ideas should give us an algorithm anyway...

- If A is not idempotent, we would also like to decide to absorption.
- Problem with taking the idempotent reduct: We might lose the generators of the clone of **A**.
- Imitating some of Dmitriy Zhuk's ideas should give us an algorithm anyway...

Thank you for your attention.

< 67 ▶

3