The interpretability lattice of clonoids is distributive

Alexandr Kazda, Matthew Moore

Charles University and University of Kansas

March 1st, 2019
97. Arbeitstagung Allgemeine Algebra

Clonoids (AKA minions AKA minor closed sets)

- A functional clonoid \mathcal{C} on sets A, B is a nonempty family of operations from A to B closed under taking minors
- Taking minors: $\sigma:[n] \rightarrow[m]$ sends n-ary f to m-ary f^{σ} where $f^{\sigma}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$

Clonoids (AKA minions AKA minor closed sets)

- A functional clonoid \mathcal{C} on sets A, B is a nonempty family of operations from A to B closed under taking minors
- Taking minors: $\sigma:[n] \rightarrow[m]$ sends n-ary f to m-ary f^{σ} where

$$
f^{\sigma}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

Clonoid homomorphisms

- $\phi: \mathcal{C} \rightarrow \mathcal{D}$ preserves arity and commutes with taking minors
- Another view: homomorphism sends identities true in \mathcal{C} to identities of \mathcal{D} - can interpret \mathcal{C} in \mathcal{D}
- Example:

$$
f(x, x, y) \approx g(x, y, y, z) \Rightarrow \phi(f)(x, x, y) \approx \phi(g)(x, y, y, z)
$$

- For $\mathbb{A}, \mathbb{B}, \mathbb{A}^{\prime}, \mathbb{B}^{\prime}$ finite relational structures $\operatorname{Pol}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{Pol}\left(\mathbb{A}^{\prime}, \mathbb{B}^{\prime}\right)$ gives a reduction from $\operatorname{PCSP}\left(\mathbb{A}^{\prime}, \mathbb{B}^{\prime}\right)$ to $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ [Bulín, Krokhin, Opršal; 2018]

Clonoid homomorphisms

- $\phi: \mathcal{C} \rightarrow \mathcal{D}$ preserves arity and commutes with taking minors
- Another view: homomorphism sends identities true in \mathcal{C} to identities of \mathcal{D} - can interpret \mathcal{C} in \mathcal{D}
- Example:

$$
f(x, x, y) \approx g(x, y, y, z) \Rightarrow \phi(f)(x, x, y) \approx \phi(g)(x, y, y, z)
$$

- For $\mathbb{A}, \mathbb{B}, \mathbb{A}^{\prime}, \mathbb{B}^{\prime}$ finite relational structures $\operatorname{Pol}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{Pol}\left(\mathbb{A}^{\prime}, \mathbb{B}^{\prime}\right)$ gives a reduction from $\operatorname{PCSP}\left(\mathbb{A}^{\prime}, \mathbb{B}^{\prime}\right)$ to $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ [Bulín, Krokhin, Opršal; 2018]

Clonoid homomorphisms

- $\phi: \mathcal{C} \rightarrow \mathcal{D}$ preserves arity and commutes with taking minors
- Another view: homomorphism sends identities true in \mathcal{C} to identities of \mathcal{D} - can interpret \mathcal{C} in \mathcal{D}
- Example:

$$
f(x, x, y) \approx g(x, y, y, z) \Rightarrow \phi(f)(x, x, y) \approx \phi(g)(x, y, y, z)
$$

- For $\mathbb{A}, \mathbb{B}, \mathbb{A}^{\prime}, \mathbb{B}^{\prime}$ finite relational structures $\operatorname{Pol}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{Pol}\left(\mathbb{A}^{\prime}, \mathbb{B}^{\prime}\right)$
gives a reduction from $\operatorname{PCSP}\left(\mathbb{A}^{\prime}, \mathbb{B}^{\prime}\right)$ to $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})[$ Bulín, Krokhin, Opršal; 2018]

Clonoid homomorphisms

- $\phi: \mathcal{C} \rightarrow \mathcal{D}$ preserves arity and commutes with taking minors
- Another view: homomorphism sends identities true in \mathcal{C} to identities of \mathcal{D} - can interpret \mathcal{C} in \mathcal{D}
- Example:

$$
f(x, x, y) \approx g(x, y, y, z) \Rightarrow \phi(f)(x, x, y) \approx \phi(g)(x, y, y, z)
$$

- For $\mathbb{A}, \mathbb{B}, \mathbb{A}^{\prime}, \mathbb{B}^{\prime}$ finite relational structures $\operatorname{Pol}(\mathbb{A}, \mathbb{B}) \rightarrow \operatorname{Pol}\left(\mathbb{A}^{\prime}, \mathbb{B}^{\prime}\right)$ gives a reduction from $\operatorname{PCSP}\left(\mathbb{A}^{\prime}, \mathbb{B}^{\prime}\right)$ to $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})[B u l i ́ n$, Krokhin, Opršal; 2018]

Interpretability lattice

- $\mathcal{C} \rightarrow \mathcal{D}$ is a quasiorder - factorize and look at the poset \mathcal{L}
- Libor Barto: A lot of categories embed (fully) into \mathcal{L} (it is alg-universal)
- Warning: \mathcal{L} is class-size
- \mathcal{L} restricted to finite clonoids: continuum-sized
- \mathcal{L} is also a lattice

Interpretability lattice

- $\mathcal{C} \rightarrow \mathcal{D}$ is a quasiorder - factorize and look at the poset \mathcal{L}
- Libor Barto: A lot of categories embed (fully) into \mathcal{L} (it is alg-universal)
- Warning: \mathcal{L} is class-size
- \mathcal{L} restricted to finite clonoids: continuum-sized
- \mathcal{L} is also a lattice

Interpretability lattice

- $\mathcal{C} \rightarrow \mathcal{D}$ is a quasiorder - factorize and look at the poset \mathcal{L}
- Libor Barto: A lot of categories embed (fully) into \mathcal{L} (it is alg-universal)
- Warning: \mathcal{L} is class-size
- \mathcal{L} restricted to finite clonoids: continuum-sized
- \mathcal{L} is also a lattice

Interpretability lattice

- $\mathcal{C} \rightarrow \mathcal{D}$ is a quasiorder - factorize and look at the poset \mathcal{L}
- Libor Barto: A lot of categories embed (fully) into \mathcal{L} (it is alg-universal)
- Warning: \mathcal{L} is class-size
- \mathcal{L} restricted to finite clonoids: continuum-sized
- \mathcal{L} is also a lattice

Interpretability lattice

- $\mathcal{C} \rightarrow \mathcal{D}$ is a quasiorder - factorize and look at the poset \mathcal{L}
- Libor Barto: A lot of categories embed (fully) into \mathcal{L} (it is alg-universal)
- Warning: \mathcal{L} is class-size
- \mathcal{L} restricted to finite clonoids: continuum-sized
- \mathcal{L} is also a lattice

Meet

- \mathcal{C} goes from A_{1} to B_{1} and \mathcal{D} goes from A_{2} to B_{2}
- $\mathcal{C} \wedge \mathcal{D}$ has operations (f, g) where f and g are operations in \mathcal{C} and \mathcal{D} - $(f, g): A_{1}^{n} \times A_{2}^{n} \rightarrow B_{1} \times B_{2}$ is defined componentwise

Meet

- \mathcal{C} goes from A_{1} to B_{1} and \mathcal{D} goes from A_{2} to B_{2}
- $\mathcal{C} \wedge \mathcal{D}$ has operations (f, g) where f and g are operations in \mathcal{C} and \mathcal{D}
- $(f, g): A_{1}^{n} \times A_{2}^{n} \rightarrow B_{1} \times B_{2}$ is defined componentwise

Meet

- \mathcal{C} goes from A_{1} to B_{1} and \mathcal{D} goes from A_{2} to B_{2}
- $\mathcal{C} \wedge \mathcal{D}$ has operations (f, g) where f and g are operations in \mathcal{C} and \mathcal{D}
- $(f, g): A_{1}^{n} \times A_{2}^{n} \rightarrow B_{1} \times B_{2}$ is defined componentwise

Join

- Abstract clonoids: $\mathcal{C} \vee \mathcal{D}$ satisfies all identities of \mathcal{C} and \mathcal{D}
- Operations of $\mathcal{C} \vee \mathcal{D}$: Disjoint union of \mathcal{C} and \mathcal{D}
- $\mathcal{C} \vee \mathcal{D}$ goes from $A_{1} \cup A_{2}$ to $B_{1} \cup B_{2} \cup\{\star\}$, each operation comes either from \mathcal{C} or from \mathcal{D}.
- Output * for "undefined"

Join

- Abstract clonoids: $\mathcal{C} \vee \mathcal{D}$ satisfies all identities of \mathcal{C} and \mathcal{D}
- Operations of $\mathcal{C} \vee \mathcal{D}$: Disjoint union of \mathcal{C} and \mathcal{D}
- $\mathcal{C} \vee \mathcal{D}$ goes from $A_{1} \cup A_{2}$ to $B_{1} \cup B_{2} \cup\{\star\}$, each operation comes either from \mathcal{C} or from \mathcal{D}.
- Output * for "undefined"

Join

- Abstract clonoids: $\mathcal{C} \vee \mathcal{D}$ satisfies all identities of \mathcal{C} and \mathcal{D}
- Operations of $\mathcal{C} \vee \mathcal{D}$: Disjoint union of \mathcal{C} and \mathcal{D}
- $\mathcal{C} \vee \mathcal{D}$ goes from $A_{1} \cup A_{2}$ to $B_{1} \cup B_{2} \cup\{\star\}$, each operation comes either from \mathcal{C} or from \mathcal{D}.
- Output * for "undefined"

Join

- Abstract clonoids: $\mathcal{C} \vee \mathcal{D}$ satisfies all identities of \mathcal{C} and \mathcal{D}
- Operations of $\mathcal{C} \vee \mathcal{D}$: Disjoint union of \mathcal{C} and \mathcal{D}
- $\mathcal{C} \vee \mathcal{D}$ goes from $A_{1} \cup A_{2}$ to $B_{1} \cup B_{2} \cup\{\star\}$, each operation comes either from \mathcal{C} or from \mathcal{D}.
- Output \star for "undefined"

Distributivity

$$
\mathcal{C} \wedge(\mathcal{D} \vee \mathcal{E})=(\mathcal{C} \wedge \mathcal{D}) \vee(\mathcal{C} \wedge \mathcal{E})
$$

Watch the board!

Distributivity

$$
\mathcal{C} \wedge(\mathcal{D} \vee \mathcal{E})=(\mathcal{C} \wedge \mathcal{D}) \vee(\mathcal{C} \wedge \mathcal{E})
$$

Watch the board!

Distributive sublattices of \mathcal{L}

- Any finite distributive lattice is a sublattice of \mathcal{L}
- Can we do all countable distributive lattices? Probably.

Distributive sublattices of \mathcal{L}

- Any finite distributive lattice is a sublattice of \mathcal{L}
- Can we do all countable distributive lattices? Probably...

Thank you for your attention.

