> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtai a majority

Conclusions

Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Charles University, Prague

Jardafest Prague June 24, 2010

Outline

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

1 Maltsev digraphs

2 The R^+ and R^- relations

3 How to obtain a majority

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure G = (V, E) with E ⊂ V².
- Given a graph, we can define the algebra of its idempotent polymorphisms Pol *G*.
- A polymorphism m: V³ → V is Maltsev if for all x, y ∈ V we have

$$m(x, y, y) = x \quad m(x, x, y) = y.$$

$$M(y, x, x) = M(x, y, x) = M(y, x, x) = x.$$

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure G = (V, E) with E ⊂ V².
- Given a graph, we can define the algebra of its idempotent polymorphisms Pol *G*.
- A polymorphism m: V³ → V is Maltsev if for all x, y ∈ V we have

$$m(x, y, y) = x \quad m(x, x, y) = y.$$

$$M(y, x, x) = M(x, y, x) = M(y, x, x) = x.$$

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Basic definitions

▲□▼▲□▼▲□▼▲□▼ □ ● ●

- A digraph will be a directed graph with loops allowed, i.e. the relational structure G = (V, E) with E ⊂ V².
- Given a graph, we can define the algebra of its idempotent polymorphisms Pol *G*.
- A polymorphism m: V³ → V is Maltsev if for all x, y ∈ V we have

$$m(x, y, y) = x \quad m(x, x, y) = y.$$

$$M(y, x, x) = M(x, y, x) = M(y, x, x) = x.$$

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure G = (V, E) with E ⊂ V².
- Given a graph, we can define the algebra of its idempotent polymorphisms Pol *G*.
- A polymorphism m: V³ → V is Maltsev if for all x, y ∈ V we have

$$m(x, y, y) = x$$
 $m(x, x, y) = y$

$$M(y, x, x) = M(x, y, x) = M(y, x, x) = x.$$

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Basic definitions

- A digraph will be a directed graph with loops allowed, i.e. the relational structure G = (V, E) with E ⊂ V².
- Given a graph, we can define the algebra of its idempotent polymorphisms Pol *G*.
- A polymorphism m: V³ → V is Maltsev if for all x, y ∈ V we have

$$m(x, y, y) = x$$
 $m(x, x, y) = y$

A polymorphism M : V³ → V is a majority if for all x, y ∈ V we have

$$M(y,x,x) = M(x,y,x) = M(y,x,x) = x.$$

> Alexandr Kazda

$\mathsf{Maltsev} \Rightarrow \mathsf{majority}$

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- We will call a digraph *G* Maltsev resp. having a majority if Pol *G* contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group Z₂ × Z₂).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that *G* is has a Maltsev operation *m* and is smooth.

> Alexandr Kazda

$\mathsf{Maltsev} \Rightarrow \mathsf{majority}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- We will call a digraph *G* Maltsev resp. having a majority if Pol *G* contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group Z₂ × Z₂).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that *G* is has a Maltsev operation *m* and is smooth.

norphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

$\mathsf{Maltsev} \Rightarrow \mathsf{majority}$

- We will call a digraph *G* Maltsev resp. having a majority if Pol *G* contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group Z₂ × Z₂).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that G is has a Maltsev operation m and is smooth.

Alexandr Kazda

Maltsev digraphs

- The R^+ and R^- relations
- How to obtain a majority
- Conclusions

• We will call a digraph *G* Maltsev resp. having a majority if Pol *G* contains a Maltsev resp. majority polymorphism.

Maltsev \Rightarrow majority

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- In general algebras, having Maltsev operation does not imply having majority (consider the group Z₂ × Z₂).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that G is has a Maltsev operation m and is smooth.

> Alexandr Kazda

$\mathsf{Maltsev} \Rightarrow \mathsf{majority}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Maltsev digraphs

- The R^+ and R^- relations
- How to obtain a majority
- Conclusions

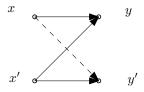
- We will call a digraph G Maltsev resp. having a majority if Pol G contains a Maltsev resp. majority polymorphism.
- In general algebras, having Maltsev operation does not imply having majority (consider the group Z₂ × Z₂).
- However, we show that if a digraph is Maltsev then it does have a majority.
- From now on we will assume that G is has a Maltsev operation m and is smooth.

Alexandr Kazda

Maltsev digraphs

- The R^+ and R^- relations
- How to obtain a majority
- Conclusions

- Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.
- Now apply the Maltsev polymorphism *m* and we get ...
- ... that $(x, y') \in E$ as well.



• We say that *E* is rectangular.

Rectangularity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

digraphs have a majority polymorphism

Maltsev

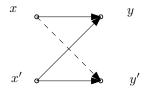
Alexandr Kazda

Maltsev digraphs

- The R⁺ and R⁻ relations
- How to obtain a majority
- Conclusions

• Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.

- Now apply the Maltsev polymorphism *m* and we get ...
- ... that $(x, y') \in E$ as well.



digraphs have a majority polymorphism

Maltsev

Alexandr Kazda

Maltsev digraphs

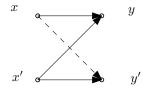
The R^+ and R^- relations

How to obtain a majority

Conclusions

- Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.
- Now apply the Maltsev polymorphism *m* and we get

• ... that $(x, y') \in E$ as well.



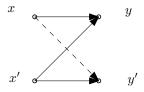
a majority polymorphism Alexandr Kazda

Maltsev digraphs have

Maltsev digraphs

- The R^+ and R^- relations
- How to obtain a majority
- Conclusions

- Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.
- Now apply the Maltsev polymorphism *m* and we get
- ... that $(x, y') \in E$ as well.



polymorphism Alexandr Kazda

Maltsev digraphs have

a majority

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- Let x, y, x', y' be vertices of G and let $(x, y), (x', y'), (x', y) \in E$.
- Now apply the Maltsev polymorphism *m* and we get
- ... that $(x, y') \in E$ as well.

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

• For v in V, we will denote by v^+ the vertex set $\{u \in V(G) : (v, u) \in E(G)\}$ by v^- the vertex set $\{u \in V(G) : (u, v) \in E(G)\}.$

• For u, v vertices of G, we write uR^+v if $u^+ = v^+$ and uR^-v if $u^- = v^-$.

• In the picture, we have $x^+ = y^+$, therefore xR^+y .

R^+ and R^-

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- For v in V, we will denote by v^+ the vertex set $\{u \in V(G) : (v, u) \in E(G)\}$ by v^- the vertex set $\{u \in V(G) : (u, v) \in E(G)\}.$
- For u, v vertices of G, we write uR^+v if $u^+ = v^+$ and uR^-v if $u^- = v^-$.

Maltsev digraphs have a majority polymorphism

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- For v in V, we will denote by v^+ the vertex set $\{u \in V(G) : (v, u) \in E(G)\}$ by v^- the vertex set $\{u \in V(G) : (u, v) \in E(G)\}.$
- For u, v vertices of G, we write uR^+v if $u^+ = v^+$ and uR^-v if $u^- = v^-$.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Maltsev digraphs have a majority polymorphism

Alexandr Kazda

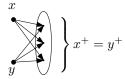
Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- For v in V, we will denote by v^+ the vertex set $\{u \in V(G) : (v, u) \in E(G)\}$ by v^- the vertex set $\{u \in V(G) : (u, v) \in E(G)\}.$
- For u, v vertices of G, we write uR^+v if $u^+ = v^+$ and uR^-v if $u^- = v^-$.



▲□▼▲□▼▲□▼▲□▼ □ ● ●

Maltsev digraphs have a majority polymorphism

Alexandr Kazda

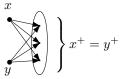
Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- For v in V, we will denote by v^+ the vertex set $\{u \in V(G) : (v, u) \in E(G)\}$ by v^- the vertex set $\{u \in V(G) : (u, v) \in E(G)\}.$
- For u, v vertices of G, we write uR^+v if $u^+ = v^+$ and uR^-v if $u^- = v^-$.



> Alexandr Kazda

R^+ and R^- are nice

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- As *E* is rectangular, we obtain the following:
- The relations R^+ and R^- are equivalences on V.
- The mapping φ : E → E⁺ is a bijection from the set of equivalence classes of R⁺ to the set of equivalence classes of R⁻.

> Alexandr Kazda

 R^+ and R^- are nice

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

• As *E* is rectangular, we obtain the following:

- The relations R^+ and R^- are equivalences on V.
- The mapping φ : E → E⁺ is a bijection from the set of equivalence classes of R⁺ to the set of equivalence classes of R⁻.

> Alexandr Kazda

R^+ and R^- are nice

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- As *E* is rectangular, we obtain the following:
- The relations R^+ and R^- are equivalences on V.
- The mapping φ : E → E⁺ is a bijection from the set of equivalence classes of R⁺ to the set of equivalence classes of R⁻.

> Alexandr Kazda

R^+ and R^- are nice

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- As *E* is rectangular, we obtain the following:
- The relations R^+ and R^- are equivalences on V.
- The mapping φ : E → E⁺ is a bijection from the set of equivalence classes of R⁺ to the set of equivalence classes of R⁻.

> Alexandr Kazda

Maltsev digraphs

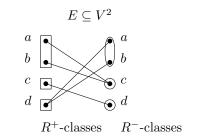
The R^+ and R^- relations

How to obtain a majority

Conclusions

 ${\rm Graph}\ G$

R^+ and R^- in a picture



▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

The graphs G^+ and G^-

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Given G, we define the graph G⁺ whose vertices are the equivalence classes of R⁺ and (U, V) ∈ E(G⁺) iff there exist vertices u ∈ U, v ∈ V with (u, v) ∈ E(G).
- We define *G*⁻ similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+ .

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

The graphs G^+ and G^-

- Given G, we define the graph G⁺ whose vertices are the equivalence classes of R⁺ and (U, V) ∈ E(G⁺) iff there exist vertices u ∈ U, v ∈ V with (u, v) ∈ E(G).
- We define G⁻ similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+ .

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

The graphs G^+ and G^-

- Given G, we define the graph G⁺ whose vertices are the equivalence classes of R⁺ and (U, V) ∈ E(G⁺) iff there exist vertices u ∈ U, v ∈ V with (u, v) ∈ E(G).
- We define G^- similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+ .

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

The graphs G^+ and G^-

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Given G, we define the graph G⁺ whose vertices are the equivalence classes of R⁺ and (U, V) ∈ E(G⁺) iff there exist vertices u ∈ U, v ∈ V with (u, v) ∈ E(G).
- We define G^- similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+ .

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

The graphs G^+ and G^-

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Given G, we define the graph G⁺ whose vertices are the equivalence classes of R⁺ and (U, V) ∈ E(G⁺) iff there exist vertices u ∈ U, v ∈ V with (u, v) ∈ E(G).
- We define G^- similarly.
- A little thought gives us that G^+ and G^- are isomorphic.
- It turns out that if G is Maltsev then so is G^+ .

> Alexandr Kazda

Proof by induction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- We are now ready for a proof by induction.
- Assume that G is the smallest Maltsev graph without a majority operation.
- If $|V(G^+)| = |V(G)|$ then G is a graph of a permutation and we win.
- Else...

> Alexandr Kazda

Proof by induction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Maltsev

The R^+ and R^- relations

How to obtain a majority

Conclusions

• We are now ready for a proof by induction.

- Assume that *G* is the smallest Maltsev graph without a majority operation.
- If $|V(G^+)| = |V(G)|$ then G is a graph of a permutation and we win.
- Else...

> Alexandr Kazda

Proof by induction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- We are now ready for a proof by induction.
- Assume that G is the smallest Maltsev graph without a majority operation.
- If $|V(G^+)| = |V(G)|$ then G is a graph of a permutation and we win.

• Else...

> Alexandr Kazda

Proof by induction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- We are now ready for a proof by induction.
- Assume that G is the smallest Maltsev graph without a majority operation.
- If |V(G⁺)| = |V(G)| then G is a graph of a permutation and we win.

• Else...

> Alexandr Kazda

Proof by induction

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- We are now ready for a proof by induction.
- Assume that G is the smallest Maltsev graph without a majority operation.
- If |V(G⁺)| = |V(G)| then G is a graph of a permutation and we win.
- Else. . .

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Extending the majority

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

• Else, we have a majority operation M^+ on G^+ and M^- on G^- which we can extend to M on G by demanding that

$$[M(x, y, z)]_{R^+} = M^+([x]_{R^+}, [y]_{R^+}, [z]_{R^+})$$
$$[M(x, y, z)]_{R^-} = M^-([x]_{R^-}, [y]_{R^-}, [z]_{R^-})$$

• Examining R^+ and R^- , we discover that such an M always exists and is a majority polymorphism of G.

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Extending the majority

• Else, we have a majority operation M^+ on G^+ and M^- on G^- which we can extend to M on G by demanding that

$$[M(x, y, z)]_{R^+} = M^+([x]_{R^+}, [y]_{R^+}, [z]_{R^+})$$

$$[M(x, y, z)]_{R^-} = M^-([x]_{R^-}, [y]_{R^-}, [z]_{R^-})$$

• Examining R^+ and R^- , we discover that such an M always exists and is a majority polymorphism of G.

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

Extending the majority

• Else, we have a majority operation M^+ on G^+ and M^- on G^- which we can extend to M on G by demanding that

$$[M(x, y, z)]_{R^+} = M^+([x]_{R^+}, [y]_{R^+}, [z]_{R^+})$$

$$[M(x, y, z)]_{R^-} = M^-([x]_{R^-}, [y]_{R^-}, [z]_{R^-})$$

• Examining R^+ and R^- , we discover that such an M always exists and is a majority polymorphism of G.

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

CSP complexity

- If G is a graph, add constants (=names of vertices) to the language of G and consider the problem CSP(G_c).
- If G is Maltsev then we already know that $CSP(G_c)$ is in P...
- ... however, if G has both Maltsev and majority then CSP(G_c) is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev ⇒ CSP(G_c) is solvable in logspace.

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

CSP complexity

- If G is a graph, add constants (=names of vertices) to the language of G and consider the problem CSP(G_c).
- If G is Maltsev then we already know that $CSP(G_c)$ is in P...
- ... however, if G has both Maltsev and majority then CSP(G_c) is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev \Rightarrow CSP(G_c) is solvable in logspace.

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

CSP complexity

- If G is a graph, add constants (=names of vertices) to the language of G and consider the problem CSP(G_c).
- If G is Maltsev then we already know that $CSP(G_c)$ is in P...
- ... however, if G has both Maltsev and majority then CSP(G_c) is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev \Rightarrow CSP(G_c) is solvable in logspace.

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

CSP complexity

- If G is a graph, add constants (=names of vertices) to the language of G and consider the problem CSP(G_c).
- If G is Maltsev then we already know that $CSP(G_c)$ is in P...
- ... however, if G has both Maltsev and majority then CSP(G_c) is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev \Rightarrow CSP(G_c) is solvable in logspace.

Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

CSP complexity

- If G is a graph, add constants (=names of vertices) to the language of G and consider the problem CSP(G_c).
- If G is Maltsev then we already know that $CSP(G_c)$ is in P...
- ... however, if G has both Maltsev and majority then CSP(G_c) is even easier: solvable in deterministic logarithmic space (a result by V. Dalmau and B. Larose).
- Therefore we have G Maltsev \Rightarrow CSP(G_c) is solvable in logspace.

Alexandr

Maltsev digraphs

- The R^+ and R^- relations
- How to obtain a majority
- Conclusions

Open problems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Is it possible to generalize the result to the case when *G* has several edge relations?
- What other implications of the type "*G* has *t* then *G* has *s*" hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on *n* vertices.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

a majority polymorphism Alexandr Kazda

Maltsev digraphs have

Maltsev digraphs

The R^+ and R^- relations

How to obtain a majority

Conclusions

- Is it possible to generalize the result to the case when G has several edge relations?
- What other implications of the type "*G* has *t* then *G* has *s*" hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on *n* vertices.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

polymorphism Alexandr Kazda

Maltsev digraphs have

a majority

Maltsev digraphs

- The R^+ and R^- relations
- How to obtain a majority
- Conclusions

- Is it possible to generalize the result to the case when G has several edge relations?
- What other implications of the type "G has t then G has s" hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on *n* vertices.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

polymorphism Alexandr Kazda

Maltsev digraphs have

a majority

Maltsev digraphs

- The R^+ and R^- relations
- How to obtain a majority
- Conclusions

- Is it possible to generalize the result to the case when *G* has several edge relations?
- What other implications of the type "G has t then G has s" hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on *n* vertices.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

a majority polymorphism Alexandr Kazda

Maltsev digraphs have

Maltsev digraphs

- The R^+ and R^- relations
- How to obtain a majority
- Conclusions

- Is it possible to generalize the result to the case when G has several edge relations?
- What other implications of the type "G has t then G has s" hold in graphs but not for general algebras?
- Maybe some such implications hold for all finitely presented algebras?
- It would also be interesting to estimate the number of Maltsev graphs on *n* vertices.

> Alexandr Kazda

Maltsev digraphs

The R^+ and R^- relations

How to obtai a majority

Conclusions

Thanks for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ