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Our problems

For a fixed digraph G , we would like to decide whether there
exists a homomorphism from some input digraph H to G .

This is the Digraph Homomorphism Problem. Its complexity
depends on the choice of G .

The Homomorphism Extension Problem is similar, only we
want to know if we can extend some partial homomorphism
f : H → G to a homomorphism.
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CSP

Both problems can be described in the language of the
Constraint Satisfaction Problem.

We look for a map h : V (H)→ V (G ) that satisfies
constraints.

Edge constraint on the pair u, v ∈ V (H) is
“(h(u), h(v)) ∈ E (G )”.

For any w ∈ V (G ) we have the constant constraint which for
v ∈ V (H) says “h(v) = w”.

We can also combine constraints.
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Random digraph

A random digraph on n vertices will be a digraph where each
edge exists with a probability p ∈ (0, 1). We fix p = 1/2 for
simplicity.

How hard is the Homomorphism Extension Problem for G
large random digraph?
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Intermezzo

Theorem (Hell, Nešeťril, ’90)

Let G be an undirected graph. Then the Homomorphism Problem
of G is polynomially solvable if G is bipartite or contains a loop
and NP-complete otherwise.
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Random Digraph Homomorphism Complexity

If G is a large random digraph without loops allowed then
Digraph Homomorphism Problem for G is almost surely
NP-complete.

If G is a large random digraph with loops allowed then
Digraph Homomorphism Problem for G is almost surely
polynomial.

Another approach: random G has only projections as its
polymorphisms (see Nešeťril and Luczak).
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We prove that extending homomorphisms to G is hard even if
there are loops in G .

For v1, . . . , vk vertices of G , denote
Sv1,...,vk = {w ∈ V (G ) : (v1,w), . . . , (vk ,w) ∈ E (G )}.
It is easy to construct a constraint “h(u) ∈ Sv1,...,vk ”.

The set Sv1,...,vk is a subalgebra of V (G ).
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Subalgebras are our friends

If we find in G many disjoint three element subalgebras, we
have won.

At least one of these subalgebras will almost surely contain K3

and so we can reduce 3-coloring to our homomorphism
extension problem.

But can we do that?
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Taming the random digraph

Let us choose k = log(n/3) and order the vertices of G .

We now keep constructing Sv1,...,vk until we produce a
subalgebra.

We have a lot of shots, since log n� n.

We are careful not to touch the insides of subalgebras.
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Finishing the proof

We have shown that G has almost surely k disjoint three
element subalgebras for any k .

Probability that there is no K3 subalgebra is then at most(
1− 1/29

)k
.

Let K be the event “G contains a K3 induced by some
subalgebra”.

We have
lim inf
n→∞

P(K ) = 1

Therefore, our problem is almost surely NP-complete.
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Thanks for your attention.
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