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Abstract: The aim of this work is to study universal quadratic forms over bi-
quadratic fields. In the thesis we define biquadratic fields and describe their
structure. In particular, we study some distinguished (totally positive and ad-
ditively indecomposable) elements, their norms and traces. Then we describe
the theory of universal quadratic forms and use special elements to find a lower
bound for the number of variables of a universal quadratic form over some bi-
quadratic fields.

Abstrakt: Ćılem této práce je studium univerzálńıch kvadratických forem nad
bikvadratickými tělesy. V práci defininujeme bikvadratická tělesa a popisujeme
jejich strukturu. Konkrétně studujeme některé význačné (totálně kladné a adi-
tivně nerozložitelné) prvky, jejich normy a stopy. Poté popisujeme teorii uni-
verzálńıch kvadratických forem a použ́ıváme význačné prvky k d̊ukazu dolńıho
odhadu počtu proměnných univerzálńı kvadratické formy v některých bikvadrat-
ických tělesech.
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List of Notations

C field of complex numbers

R field of real numbers

Q field of rational numbers

Z ring of rational integers

K number field

OK ring of integers of K

O+
K ring of totally positive integers of K

UK group of units of OK
U+
K group of totally positive units of OK

U2
K group of squares of units of OK

σ1, σ2, . . . , σd embeddings of K into C
r number of real embeddings of K

s number of conjugate pairs of complex embeddings of K

α(1), α(2), . . . , α(d) conjugates of α ∈ K
α � β α(i) > β(i) for every i ∈ {1, 2, . . . , d}
N(α) norm of α

Tr(α) trace of α

α̂ maximum of |α(i)|, i ∈ {1, 2, . . . , d}
〈v, w〉 standard dot product of vectors v, w in Rd

[G : H] index of subgroup H in the group G
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Introduction

In 1770, Lagrange proved his famous Four-Square theorem – every positive integer
can be expressed as the sum of four squares of integers. This result can be
generalized in several ways. For example, we can ask whether there are other
quadratic forms which represents all positive integers. Forms with this property
are called universal. We can also consider quadratic forms over different rings
than rational integers, typically the ring of integers of a number field K.

These two generalizations were extensively studied. As an example, Manjul
Bhargava and Jonathan P. Hanke [BH] proved that any quadratic form over ra-
tional integers represents all positive integers if and only if it represents numbers
1, 2, . . . , 290. Carl L. Siegel [Sie45] proved that the sum of any number of squares
is universal only for K = Q and K = Q(

√
5).

My supervisor Vı́tězslav Kala with Valentin Blomer [Kal16b] [BK15] recently
proved a theorem stating that for every N there exists a squarefree integer D
such that every universal quadratic form over the ring of integers of Q(

√
D) has

more than N − 1 variables.
The proof of this theorem uses the continued fraction of

√
D. The roots

of polynomials of higher degree have more complicated continued fractions and
proving similar theorem in case of a general field K seems to be very difficult.
We completely do not understand the relationship between the continued fraction
and the arithmetic of the field K and it is not clear if such a relation even exists.
In this thesis we study universal forms over biquadratic fields Q(

√
p,
√
q). These

fields are first in line after quadratic fields because they are still relatively easy to
handle and share many of their properties with quadratic fields (where we know
much more).

In the first introductory chapter we give basic definitions and facts from al-
gebraic number theory and then introduce totally real fields and totally positive
elements. The second chapter describes biquadratic fields and their properties.
In particular, we study the ring of integers and the group of units. We also de-
scribe the subgroup of totally positive units and study the indices of this group
and the group of the squares of units in the group of all units.

In the third chapter we introduce additively indecomposable integers. These
elements are “difficult to represent” by a quadratic form, so they play an im-
portant role in the proof of Theorem 26 and related theory. We prove several
bounds concerning trace and norm of totally positive and indecomposable in-
tegers in quadratic and biquadratic fields. The results concerning biquadratic
fields are original, although they are analogous to the results in quadratic case.
In the last section we present Theorem 21 which gives a general upper bound
on the norms of indecomposable integers and is due Brunotte [Bru82, Bru83].
We present an original geometric proof of Lemma 20 which is an essential part
of the proof of the theorem.

In the fourth chapter we deal with universal forms and present some of Kala’s
results – we provide more detailed proofs of Lemma 24 and Proposition 25. Finally
we use this results and the bounds from the preceding chapter to prove a new
Theorem 27 which is an analogy of Theorem 26 for biquadratic fields.
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1. Basis definitions and facts

This chapter summarizes basic notations and facts we will need throughout
the thesis.

1.1 Number fields

Definition 1. Let K be a field. We say that K is a number field of degree d if it
is a finite extension of Q of degree d, i.e. d-dimensional vector space over Q.

Proposition 2. Let K be a number field of degree d. Then there are precisely d
field homomorphisms σi : K ↪→ C.

For proof see [Mil15].

Definition 3. Let a ∈ K. Then we define norm of a as N(a) =
∏d

i=1 σi(a) and

trace of a as Tr =
∑d

i=1 σi(a).

Definition 4. Number field K is called Galois over Q if every σi is an automor-
phism of K.

Definition 5. Let K be a number field. By its ring of integers OK we mean
a subring of K consisting of all roots of the monic polynomials with integer
coefficients in K. We call the usual integers in Z rational integers to avoid a
confusion.

Proposition 6. If a ∈ OK, then N(a) and Tr(a) are rational integers.

For proof see [Mil15].
One of the basic facts in algebraic number theory is that the ring OK is a free

Z-module with dimension [K : Q]. Its basis over Z is called integral basis.
Ring of integers OK has an important number invariant called discriminant.

For totally real fields, it describes the volume of fundamental domain of lattice
L which is formed by points (σ1(a), σ2(a), . . . , σd(a)) in Rd where a ∈ K. Formal
definition of discriminant is rather technical and we will not need it. For more
details see [Mil14].

1.2 Totally positive elements

Definition 7. Number field K is called totally real if every embedding σ : K → C
has range in R.

Definition 8. Let K be a number field of degree d over Q and OK its ring
of integers. An element α of K is said to be totally positive if σ(α) > 0 for every
real embedding σ : K → R. We denote K+ the set of all totally positive elements
and O+

K the set of all totally positive integers in OK .

Let a, b ∈ K. We write a � b if σ(a) > σ(b) for every embedding s : K → R.
It is easy to see that � is a preorder relation on K. Clearly an element a is totally
positive totally positive if and only if a � 0.

Since the norm of a ∈ K is the product of all σi(a), we have N(a) > 0.
Analogically, trace of a is a sum of all σi(a), so Tr(a) > 0.
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2. Biquadratic fields

In this chapter, we introduce biquadratic fields and investigate some of their
properties. Throughout the text, let p and q be two distinct nonzero squarefree
integers (not necessarily primes). It is easy to see that this condition implies that√
q /∈ Q(

√
p) and

√
p /∈ Q(

√
q).

A Biquadratic field Q(
√
p,
√
q) is the smallest extension of Q which contains√

p and
√
q. Its degree over Q is 4. It is the splitting field of the polynomial

(x2−p)(x2−q), so it is always Galois extension of Q with Galois group isomorphic
to Klein group Z2

2. It has exactly three quadratic subfields Q(
√
p), Q(

√
p), Q(

√
r)

where
r =

pq

gcd(p, q)2
.

For example, Q(
√

2,
√

3) has three quadratic subfields Q(
√

2), Q(
√

3) and Q(
√

6).

2.1 Ring of integers of Q(
√
p,
√
q)

It is well known that rings of integers in quadratic fields K = Q(
√
p) (where p is

squarefree) are of the form

OK =

{
Z [
√
p] if p ≡ 2, 3 (mod 4),

Z
[
1+
√
p

2

]
if p ≡ 1 (mod 4).

Similar, but slightly more complicated situation occurs in the case of biquadratic
fields. The following theorem describes the structure of rings of integers in bi-
quadratic fields.

Theorem 9 (characterization of OK in Q(
√
p,
√
q)). Let K = Q(

√
p,
√
q) be

a biquadratic field, where p 6= q are distinct squarefree integers. Let us recall that
r = pq

gcd(p,q)2
. Then without loss of generality there are only four possibilities:

1. p ≡ 3 (mod 4), q ≡ r ≡ 2 (mod 4);

2. p ≡ 1 (mod 4), q ≡ r ≡ 2 (mod 4);

3. p ≡ 1 (mod 4), q ≡ r ≡ 3 (mod 4);

4. p ≡ 1 (mod 4), q ≡ r ≡ 1 (mod 4).

In these cases, OK has an integral basis of the form:

1.
(

1,
√
p,
√
q,
√
q+
√
r

2

)
;

2.
(

1,
1+
√
p

2
,
√
q,
√
q+
√
r

2

)
;

3.
(

1,
1+
√
p

2
,
√
q,
√
q+
√
r

2

)
;

4.
(

1,
1+
√
p

2
,
1+
√
q

2
,
(1+
√
p)(1+

√
q)

4

)
.
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The discriminant of OK is 1) 64pqr, 2) 16prq, 3) 16prq and 4) pqr.

Proof. Full proof can be found in [Jar07, Prop. 8.22]. We only show one inclusion
in the first case p ≡ 3 (mod 4), q ≡ r ≡ 2 (mod 4) to gain some intuition about
where the half-integers come from.

It is obvious that,
√
p and

√
q are in OK since they are roots of quadratic

polynomials x2− p and x2− q, respectively. An element of the field K lies in OK
if and only if the coefficients of its minimal polynomial are rational integers.
These coefficients can be expressed as the symmetric polynomials in roots of this

polynomial, i.e. conjugates of α. So we only need to compute N
(√

q+
√
r

2

)
and

Tr
(√

q+
√
r

2

)
and two other symmetric polynomials to check that

√
q+
√
r

2
really is

an algebraic integer.

If we do it, we get that the minimal polynomial of
√
q+
√
r

2
is

x4 − q + r

2
x2 +

(
q − r

4

)2

.

and clearly all coefficients are integers since q ≡ r (mod 4).
The discriminant can be computed as the determinant of the matrix 4 × 4

whose rows contain all conjugates of the elements of integral basis.

2.2 Group of units of Q(
√
p,
√
q)

In this section we study units in the ring of integers of biquadratic field Q(
√
p,
√
q).

In particular, we are interested in totally positive units. Recall that a unit u is
totally positive if u � 0 which means that all conjugates of u are positive. As we
will see later, totally positive units are important for understanding the structure
of indecomposable elements. They also play a role in constructions of universal
forms.

First we present a classical result due to Dirichlet.

Theorem 10 (Dirichlet unit theorem). Let K be a number field and UK the group
of units in OK. Let r be the number of real embeddings of K and s the number
of pairs of conjugate complex embeddings of K. Then the group UK is finitely
generated with rank r+ s− 1. Its torsion subgroup consist of roots of unity in K,
hence is finite.

Proof. For the proof see Milne [Mil14]. The proof uses Minkowski’s geometry
of numbers.

In the case of totally real biquadratic field K, Dirichlet theorem states that
the group of units UK is isomorphic to Z3 ⊕ Z/2Z, because the only real roots
of unity are 1 and −1 and a totally real biquadratic field has no complex and
exactly four real embeddings.

Lemma 11. Let K be a totally real field. By U+
K we mean the subgroup of UK

consisting of totally positive units. The subgroup U+
K has finite index in UK and

it is a free abelian group of rank r − 1.
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Proof. Every subgroup of a finitely generated abelian group G is finitely gener-
ated. Moreover, a subgroup of finite index has the same rank as G. Let U2

K be
the subgroup of squares in UK . Then we have U2

K ⊆ U+
K ⊂ UK since every square

in K is totally positive (all conjugates are the squares of a real number).
The subgroup U2

K has a finite index in UK . The group UK is isomorphic
Zr−1⊕Z/2Z and we have a surjective map from Zr−1⊕Z/2Z to (Z/2Z)r−1⊕Z/2Z
which sends an element (x1, x2, . . . , xr−1, a) to (x1 +2Z, x2 +2Z, . . . , xr−1 +2Z, a)
where xi ∈ Z and a ∈ Z/2Z. The kernel of this map is precisely the subgroup 2Z
which is isomorphic to U2

K . We obtain that

UK/U
2
K ' (Z/2Z)r−1 ⊕ Z/2Z ' (Z/2Z)r

so U+
K has index 2r in UK . This argument can be illustrated by the following

commutative diagram

0 - U2
K

- UK - UK/U
2
K

- 0

0 - 2Zr−1
?

- Zr−1 ⊕ Z/2Z
?

- (Z/2Z)r−1 ⊕ Z/2Z
?

- 0

where the downward arrows are isomorphisms and the rows are exact.
The subgroup U+

K has also finite index since it lies between UK and U+
K . Its

torsion consist of all roots of unity in U+
K , but the only totally positive root

of unity is 1, so the torsion subgroup is trivial. This implies that U+
K is a free

abelian group of rank r − 1.

Specially, if K is a totally real biquadratic field, then the rank of UK and U+
K

is 3. The subgroup of squares U2
K has index 16 in UK and we have

16 = [UK : U2
K ] = [UK : U+

K ][U+
K : U2

K ],

hence we obtain that the index of U+
K in UK is a divisor of 16 and the index of

U2
K in U+

K is a divisor of 8 (by absence of torsion elements). It is not easy to say
more about this indices. Garbanati [Gar76] observed that U+

K = U2
K if and only

if there is a unit of the norm −1 in UK . In biquadratic field, we can transfer
this question to its quadratic subfields. However, even in the quadratic field is
probably not known any simple condition1 describing the existence of a unit of
the norm −1.

Proposition 12. Let K be a totally real biquadratic field. If there exist a unit of
norm −1 in UK then there exist an (integral) unit of the norm −1 in all quadratic
subfields of K.

Proof. First observe, that if α is a unit of the norm −1, then α does not lie in
any of quadratic subfields of K. If α would lie in some quadratic subfields, then
it would have two pairs of conjugates which are mutually equal. So the norm
would be a square of real number, hence it would be positive.

1One condition states that there is a unit of the norm -1 in UQ(
√
D) if and only if the period

of the continued fraction of
√
D has odd length.
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For every element α of the norm −1 with conjugates α = α(1), α(2), α(3), α(4)

we know that each of the elements α(1)α(2), α(1)α(3) and α(1)α(4) is fixed by one
of three (distinct) automorphisms of K, so each of them lies in one of (distinct)
quadratic subfields of K. Each of this elements has the norm −1 in its quadratic
field, for example if α(1)α(2) lies in a quadratic subfield L, then

NL(α(1)α(2)) = (α(1)α(2))(α(3)α(4)) = α(1)α(2)α(3)α(4) = NK(α) = −1

Example. Let K = Q(
√

2,
√

3). The equation x2 − 3y2 = −1 has no solution in
Z as can be seen if we use quadratic residues modulo 3. So in the Q(

√
3) there

is no unit of the norm −1. From Proposition 12 we obtain that there is no unit
of the norm −1 in K, too. The result of Garbanati then implies that not every
totally positive unit is a square.

As can easily be seen, the group of totally positive units U+
K is generated

by the (mutually conjugate) units

α = 2−
√

2/2 +
√

6/2,

β = 2−
√

2/2−
√

6/2,

γ = 2 +
√

2/2−
√

6/2.

The subgroup of squares is generated by units

αβ = 3− 2
√

2 = (1−
√

2)2,

βγ = 5 + 2
√

6 = (
√

2 +
√

3)2,

γα = 2 +
√

3 = (
√

2/2 +
√

6/2)2.

Subgroup U2
K has index 2 in U+

K since it is generated by products of listed genera-
tors α, β, γ of U+

K . Note that the units αβ, βγ and γα are exactly the fundamental
units of quadratic subfields Q(

√
2),Q(

√
6) and Q(

√
3), respectively.

8



3. Indecomposable integers

3.1 Indecomposable integers in quadratic fields

Definition 13. A totally positive element α ∈ OK is (additively) decomposable,
if α = β + γ for β, γ ∈ O+

K . Otherwise, it is called indecomposable.

Lemma 14. Let K be a totally real fields and α ∈ UK be a unit. Then α is
indecomposable.

Proof. For contradiction, suppose that α = β + γ is an expression of a unit α as
a sum of totally positive elements. The norm of an element equals to the product
of all its conjugates. Therefore

1 = N(α) = N(β+γ) = (β(1)+γ(1))(β(2)+γ(2)) . . . (β(n)+γ(n)) ≥ N(β)+N(γ) ≥ 2

because all conjugates β(i) and γ(i) are positive. This is contradiction.

In the case of quadratic fields we can obtain a stronger result using the mixed
terms in the product

∏
(β(i) + γ(i)). Moreover, in a totally real quadratic field

Q(
√
D) (so D is squarefree positive integer), there is a complete description of in-

decomposable elements in terms of continued fraction of
√
D. See [Kal16a].

We define δ = 2
√
D if D ≡ 2, 3 (mod 4) and δ =

√
D if D ≡ 1 (mod 4).

Lemma 15. Let α ∈ Q(
√
D) be a totally positive element, α 6∈ Z. Then

Tr(α) > δ.

Proof. Suppose that D ≡ 2, 3 (mod 4) (so that δ = 2
√
D). We can write

α = x+ y
√
D where x, y ∈ Z. We have

x+ y
√
D > 0

x− y
√
D > 0.

In other words x is strictly larger than |y
√
D| which implies x >

√
D, because

y 6= 0 is an integer. Finally we have

Tr(α) = (x+ y
√
D) + (x− y

√
D) = 2x > 2

√
D = δ.

The second case D ≡ 1 (mod 4) is analogous.

Proposition 16. Let α ∈ OQ(
√
D) be an integer satisfying N(α) < δ and n - α

for every n ∈ N. Then α is indecomposable.

Proof. For contradiction, suppose that α is decomposable. Then we have

δ > N(α) = (β(1) + γ(1))(β(2) + γ(2))

= β(1)β(2) + γ(1)γ(2) + (β(1)γ(2) + β(2)γ(1)) (3.1)

= N(β) +N(γ) + Tr(β(1)γ(2)).

9



We see that δ > Tr(β(1)γ(2)) but then Lemma 15 implies that β(1)γ(2) ∈ N. This
yields β(1)γ(2) = β(2)γ(1) since the Galois group acts trivially on N. Then we get

β = β(1) =
β(2)γ(1)

γ(2)
=
β(2)γ(1)

γ(2)γ(1)
γ(1) =

β(2)γ(1)

N(γ)
γ(1) =

u

v
γ(1) =

u

v
γ,

where u and v are coprime rational integers. We obtain

vβ = uγ.

Since u and v are coprime, we can find x and y ∈ Z such that

ux+ vy = 1

(Bézout equality). We know that u divides vβ so it divides also vyβ. Moreover u
divides uxβ. If we add this up and use Bézout equality, we obtain that u divides
β. Similarly v divides γ. Then we obtain β = uc and γ = v β

u
= vc for some

c ∈ OK , so α = (u+ v)c, which is contradiction.

3.2 Indecomposables in biquadratic fields

Slight modification of the arguments from the previous section can be used for bi-
quadratic fields. Let K = Q(

√
p,
√
q) be a totally real biquadratic field and

r = pq
(p,q)2

. Suppose that α ∈ OK . Then we can write

α = a+ b
√
p+ c

√
q + d

√
r

where a, b, c, d ∈ 1
4
OK . The presence of halfs and quarters of integers depends

on the residues of p and q modulo 4 as we know from Theorem 9.

Lemma 17. Suppose that α = a+ b
√
p+ c

√
q + d

√
r ∈ OK, α /∈ Z, then

1. If b 6= 0, then

Tr(α) >


4
√
p if p ≡ 3 (mod 4) & q ≡ 2 (mod 4)

2
√
p if p ≡ 1 (mod 4) & q ≡ 2 (mod 4)

2
√
p if p ≡ 1 (mod 4) & q ≡ 3 (mod 4)√
p if p ≡ 1 (mod 4) & q ≡ 1 (mod 4)

2. If c 6= 0, then

Tr(α) >


2
√
p if p ≡ 3 (mod 4) & q ≡ 2 (mod 4)

2
√
p if p ≡ 1 (mod 4) & q ≡ 2 (mod 4)

2
√
p if p ≡ 1 (mod 4) & q ≡ 3 (mod 4)√
p if p ≡ 1 (mod 4) & q ≡ 1 (mod 4)

3. If d 6= 0, then

Tr(α) >


2
√
r if p ≡ 3 (mod 4) & q ≡ 2 (mod 4)

2
√
r if p ≡ 1 (mod 4) & q ≡ 2 (mod 4)

2
√
r if p ≡ 1 (mod 4) & q ≡ 3 (mod 4)√
r if p ≡ 1 (mod 4) & q ≡ 1 (mod 4)

10



Proof. We prove only the case d 6= 0 and p ≡ 3 (mod 4) and q ≡ 2 (mod 4).
Other cases are similar. Recall that in this case the ring of integers OK has

an integral basis (1,
√
p,
√
q,
√
q+
√
r

2
). Consequently a, b are integers and c, d are

half-integers. The element α is totally positive, which means that all its conju-
gates are positive:

a+ b
√
p+ c

√
q + d

√
r > 0

a− b√p− c√q + d
√
r > 0

a− b√p+ c
√
q − d

√
r > 0

a+ b
√
p− c√q − d

√
r > 0

If we sum first two inequalities we get a > −d
√
r. By summing the second

two inequalities we get a > d
√
r. Similar inequalities holds for c. Since d is

the nonzero half-integer, the inequality a > |d
√
r| implies a >

√
r
2

and hence

Tr(α) = 4a > 2
√
r.

Corollary 18. If K is a totally real biquadratic field, α ∈ K and α /∈ Z, then
Tr(α) > min(

√
p,
√
q,
√
r).

Proof. If α /∈ Z, then at least one of b, c or d is nonzero.

Proposition 19. Let p, q, r be as usual and K = Q(
√
p,
√
q). Let α ∈ O+

K be
an element which satisfies N(α) < 2 min(

√
p,
√
q,
√
r) and n - α for every n ∈ N.

Then α is indecomposable.

Proof. Denote δ = min(
√
p,
√
q,
√
r). For contradiction, suppose that α = β + γ

where β, γ ∈ O+
K . Then we have

2δ > N(α) = (β(1) + γ(1))(β(2) + γ(2))(β(3) + γ(3))(β(4) + γ(4))

> Tr(β(1)γ(2)γ(3)γ(4)) + Tr(β(1)β(2)β(3)γ(4)) + other (positive) members

The preceding corollary implies that β(1)γ(2)γ(3)γ(4) or β(1)β(2)β(3)γ(4) is an inte-
ger. Without loss of generality we have

β(1)γ(2)γ(3)γ(4) = β(2)γ(3)γ(4)γ(1) ∈ N.

Now we can repeat the argument from the Proposition 16. If we divide the equal-
ity by the norm of γ, we get

β = β(1) =
β(2)γ(3)γ(4)γ(1)

N(γ)
γ(1) =

u

v
γ

where u and v are coprime natural numbers. Then as in quadratic case we have
β = uc and γ = vc for some c ∈ OK , so α = (u+ v)c, contradiction.
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3.3 Maximal norm of indecomposables

To compute indecomposable elements on computer, we want some upper bound
on their norms. We prove in Theorem 21 that elements of sufficiently large norm
are always decomposable. The bound is probably very ineffective and depends
on the structure of the group of units UK . In a quadratic field Q(

√
D) we have

a better bound, namely D. This result can be found in the article [Kal16a]. It is
an interesting question if there is a similar bound for other fields.

We start the proof of Theorem 21 with the following lemma. By α̂ we mean
maximum of |α(i)| over all conjugates α(i) of α.

Lemma 20. Let K be a totally real field of degree d. Then there is a constant
BK satisfying the following condition. For every α in K there exists a totally
positive unit e ∈ UK such that

α̂e < BK |N(α)|
1
d .

Proof. Let ι be a map defined as

ι : K → Rd

α 7→ (log |α(1)|, log |α(2)|, . . . , log |α(d)|).

If ε is a unit in K, then
∑

log εi = log 1 = 0, so ε is mapped to the hyperplane
W ' Rd−1 with normal vector (1, 1, . . . , 1). By Dirichlet theorem 10, the image
of UK forms a (discrete) lattice L of dimension d − 1 in W . Since the subgroup
U+
K has finite index in UK , its image forms a sublattice L+ of the same dimension.

For α ∈ K we can interpret the number log |N(α)|√
d

as hα, where hα is the distance

from the point ι(α) to hyperplane W . Indeed,

hα =
ι(α) · (1, 1, . . . , 1)

|(1, 1, . . . , 1)|
=

log |α(1)|+ log |α(2)|+ · · ·+ log |α(d)|√
d

=
log |N(α)|√

d
.

The multiplication of an element α by units shifts the point of ι(α) in the hyper-
plane V , the hyperplane whoch contains ι(α) and is parallel to hyperplane W .
We want to minimize all coordinates of ι(αε) so we would like to shift the point

ι(α) as close as possible to the point P =
(

log |N(α)|
d

, log |N(α)|
d

, . . . , log |N(α)|
d

)
.

We fix a fundamental system of totally positive units u1, u2, . . . , ud−1 (the
basis of the lattice L+). These units form a fundamental parallelogram in the hy-
perplane W . We denote λ the diameter of this parallelogram, i.e. the maximal
distance between two points in the parallelogram. Then for every point in W
there is some point of L+ in the distance smaller than λ. This implies that
we can shift ι(α) by some vector ι(ε) of L+ in a such way that the distance
in the plane V between the points ι(αε) and P is smaller than λ. Then the point
ι(αε) lies in the ball in Rd with the centre P and the radius λ. So we have

log |αiεi| < D +
log |N(α)|

d
,

|αiεi| < eD|N(α)|
1
d .

We see that we can put BK = eD.

12



Figure 3.1: Visualization of the proof of Lemma 20

Theorem 21. Let K be a totally real field of degree d over Q and α ∈ O+
K. If

N(α) > Bd
K, then α is decomposable.

Proof. Let α be an integer such that N(α) > Bd
K . From the definition of BK

there exist a totally positive unit ε such that σ(α−1ε) = |σ(α−1ε)| < BKN(α−1)
1
d

for every σ (α−1ε is totally positive, so every σ(α−1ε) is positive). We obtain

σ(α−1ε)d < Bd
KN(α−1) < N(α)N(α−1) = 1.

which implies

α−1ε ≺ 1

ε ≺ α.

We see that α−ε � 0. Since we have also that ε � 0, we obtain the decomposition
α = (α− ε) + ε of α, so α is decomposable.
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4. Quadratic forms

4.1 Definition and basic properties

Definition 22. Let K be a field. Quadratic form over OK is a quadratic polyno-
mial in several variables with the coefficients from OK . Quadratic form Q is called
totally positive definite if it has only totally positive values and zero. Equivalently
the form Q is totally positive definite, if every form Q(i) which coefficients are
i-th conjugates of coefficients of Q is positive definite in usual sense.

Definition 23. Totally positive definite form is called universal if it represents
every totally positive integer.

Example. The form a2 + b2 + c2 + d2 is universal quadratic form over the field
Q (Lagrange’s theorem). There is no universal form over Q with three or less
variables.

Example. Siegel [Sie45] proved that Q and Q(
√

5) are the only fields where
the sum of four (or arbitrary many) squares is universal over the ring of inte-
gers.

4.2 Number of variables

V. Blomer and V. Kala recently proved [Kal16b] [BK15] that for every N there
is a real quadratic field K such that every universal form over K has more than
N variables. The start of this result is the following lemma and proposition.

Lemma 24 (Existence of lattice). Let Q(x) be a positive definite quadratic n-ary
form and A matrix such that Q(x) = xTAx. Then there exist vectors v1, v2, . . . , vn

in Rn such that

Q(x1, x2, . . . , xn) = |x1v1 + x2v
2 + · · ·+ xnv

n|2

In other words, there exists a lattice L in Rn with basis v1, v2, . . . , vn such that
the values of Q are equal to squares of lengths of vectors in L.

Proof. The standard result from linear algebra says that every positive definite
matrix A can be written as a product RTDR where the columns of the matrix R
are eigenvectors w1, w2, . . . , wn of A and the entries of D correspond to (positive)
eigenvalues λ1, λ1, . . . , λn of A on diagonal and zero elsewhere. For the proof see
[BT16, Thm. 10.32]. If we put S =

√
DR, we get decomposition A = STS and

columns of S are the desired vectors v1, v2, . . . , vn.

Proposition 25. Assume that there exist totally positive integers a1, a2, . . . , aN
such that for all 1 ≤ i 6= j ≤ N we have that if 4aiaj � c2, then c = 0 for all c
in OK. Then there are no universal totally positive (N − 1)-ary quadratic forms
over OK.
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Proof. Let Q =
∑

1≤i≤j≤n aijxixj be a quadratic form over OK and let A = (bij)
be its matrix with bii = aii and bij = bji = aij/2.

For every automorphism σ ofK denote σ(A) the matrix with the entries σ(bij).
Since the form Q is totally positive definite, the matrix σ(A) is positive definite for
every σ. Thus the (preceding) Lemma 24 gives us the decomposition σ(A) = STσ Sσ
for some real matrix Sσ with columns viσ. Denote Lσ the corresponding lattice
with the basis (v1σ, v

2
σ, . . . , v

N
σ ).

Since Q is universal, for every totally positive element α each lattice Lσ con-
tains a vector wσ(α) for which σ(α) = 〈wσ(α), wσ(α)〉σ. In particular, Q repre-
sents all elements ai so we get vectors w1

σ, w
2
σ, . . . w

N
σ ∈ Lσ which satisfy

σ(ai) = 〈wiσ, wiσ〉σ.

We will prove that N vectors wiσ in the lattice Lσ are pairwise orthogonal. Then
we have N linearly independent vectors, so

number of variables of Q = dim(Lσ) ≥ N.

By the Cauchy-Schwarz inequality for 〈·, ·〉σ, we obtain

σ(ai)σ(aj) = 〈wiσ, wiσ〉σ〈wjσ, wjσ〉σ ≥ (〈wiσ, wjσ〉σ)2 = σ(c)2.

for some c ∈ 1
2
OK (which is independent on σ - this follows from the definition

of the lattices Lσ). We see that 4aiaj � c2, so c = 〈wiσ, wjσ〉σ = 0 so the vectors
wi are pairwise orthogonal in lattice Lσ.

4.3 Quadratic and biquadratic case

V. Blomer and V. Kala proved the following theorem.

Theorem 26. For every N there exist a squarefree integer D such that in Q(
√
D)

exist elements a1, a2, . . . aN from the preceding proposition and consequently every
universal quadratic over OQ(

√
D) has more than N − 1 variables.

For the proof see [Kal16b] [BK15]. We use this theorem to prove its analogy
in the case of biquadratic fields.

Theorem 27. For every N there exist two distinct coprime squarefree integers
p, q such that in K = Q(

√
p,
√
q) every universal quadratic form in this field has

more than N − 1 variables.

Proof. Let Q(
√
p) be a quadratic field in which there exist elements a1, a2, . . . aN

from Proposition 25 and p ≡ 3 (mod 4) (it is not difficult to see from the article
[Kal16b] that we can do this assumption). The idea of the proof is to find some
q such that in K, the elements ai still satisfy the condition of Theorem 25. We
will use the characterization of integers in K 9 and Lemma 17 which gives us
the lower bound on the trace of positive elements.

We choose a squarefree integer q such that:

• √q > Tr(aiaj) for every 1 ≤ i < j ≤ N .

15



• q ≡ 2 (mod 4).

• gcd(p, q) = 1.

Now suppose that 4aiaj � c2 for some c ∈ OK . If c ∈ Q(
√
p), then also

c ∈ OQ(
√
p) because Theorem 9 implies that for p ≡ 3 (mod 4) and q ≡ 2

(mod 4) we have
Q(
√
p) ∩ OK = Z[

√
p] = OQ(

√
p).

Then the choice of elements ai and the condition of Proposition 25 says that c = 0.
Suppose that c /∈ Q[

√
p], so we can write c = u + v

√
q where u, v ∈ Q(

√
p)

and v is nonzero. Then we get

c2 = u2 + 2uv
√
q + v2q.

We consider two cases. If u is zero, then c2 = v2q. Then

Tr(c2) = qTr(v2) ≥ q ≥ √q

where the inequality Tr(v2) > q holds since v2 is nonzero totally positive integer
and its trace is then a positive integer. But then we have contradiction with the
first condition in the definition of q. So we obtain c = 0.

If u is nonzero, then one of the coordinates of c2 at
√
q or

√
r is nonzero so

Lemma 17 implies that Tr(c2) > min(
√
q,
√
r) ≥ √q (third condition in the defi-

nition of q implies that r = pq > q). But then we have

Tr(aiaj) ≥ Tr(c2) >
√
q

which is contradiction with the first condition of the definition of q. So the ele-
ments ai satisfy the condition of Proposition 25.
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