Number Theory Seminar N_{MAG470}

November 5 at 15:40 in K9

The finiteness theorem for universal m-gonal forms

Dayoon Park (Seoul National University)

A (generalized) *m*-gonal number is a non-negative rational integer defined by $P_m(x) := \frac{(m-2)x^2 - (m-4)x}{2}$ where $x \in \mathbb{Z}$. We call $F_m(\mathbf{x}) = \sum_{i=1}^n a_i P_m(x_i)$ where $a_i \in \mathbb{N}$ as *m*-gonal form. Kane proved that there always exists a (unique, minimal) $\gamma_m \in \mathbb{N}$ such that if an *m*-gonal form $F_m(\mathbf{x})$ represents every positive rational integer up to γ_m , then $F_m(\mathbf{x})$ is universal, i.e., $F_m(\mathbf{x})$ represents every positive rational integer. There are some examples for γ_m which are concretely calculated for some small *m*'s: $\gamma_3 = \gamma_6 = 8$ [Bosma and Kane], $\gamma_4 = 15$ [15-Theorem, Conway and Schneeberger], $\gamma_5 = 109$ [Ju] and $\gamma_8 = 60$ [Ju and Oh]. The growth of $\gamma_m(\text{since } m - 4 \leq \gamma_m \text{ for } 6 \leq m$, the γ_m asymptotically increases as *m* increases) was firstly questioned by Kane and Liu who proved that for $m \geq 3$ and every $\epsilon > 0$, there exists an absolute (effective) constant C_{ϵ} such that $m - 4 \leq \gamma_m \ll C_{\epsilon}m^{7+\epsilon}$.

In this talk, we will show that for $m \ge 3$, there is an absolute constant C such that $m - 4 \le \gamma_m \le C \cdot m$, which implies that the growth of γ_m is exactly linear on m.

This is a joint work with B. M. Kim.

Web semináře:

sites.google.com/site/vitakala/teaching/number-theory-seminar