Universal quadratic forms over number fields

Vítězslav Kala

Charles University, Prague Czechia
https://www1.karlin.mff.cuni.cz/~kala/web/
International Conference on Class Groups of Number Fields and Related Topics

October 24, 2021

Outline

(1) Introduction

(2) Large ranks of universal forms

(3) Estimating ranks more precisely

4 Lifting problem

Universal quadratic forms

Quadratic form $Q\left(X_{1}, \ldots, X_{r}\right)=a_{11} X_{1}^{2}+a_{12} X_{1} X_{2}+a_{22} X_{2}^{2}+\ldots$ with $a_{i j} \in \mathbb{Z}$
Which integers are represented?
A quadratic form is universal if it represents all positive integers.
Many indefinite forms, eg. $X^{2}-Y^{2}-d Z^{2}$ with $4 \nmid d$.
More interesting are positive definite forms.

- No universal positive form in 3 variables
- Lagrange (1770): $X^{2}+Y^{2}+Z^{2}+T^{2}$
- Ramanujan, Dickson (1916): classified quaternary universal positive diagonal forms, eg. $X^{2}+2 Y^{2}+4 Z^{2}+d T^{2}$ with $d \leq 14$

290 Theorem (Bhargava-Hanke 2011)

A positive definite quadratic form over \mathbb{Z} is universal it represents $1,2,3, \ldots, 290$.

Quadratic forms over number fields

$K=$ totally real number field
$\mathcal{O}=$ ring of integers in K

Quadratic form $Q\left(X_{1}, \ldots, X_{r}\right)=a_{11} X_{1}^{2}+a_{12} X_{1} X_{2}+a_{22} X_{2}^{2}+\ldots$ with $a_{i j} \in \mathcal{O}$ is universal if

- it is totally positive definite and
- represents all totally positive elements of \mathcal{O}

How about sum of squares $X_{1}^{2}+X_{2}^{2}+\cdots+X_{r}^{2}$?
Siegel (1945): Universal only for

- $K=\mathbb{Q} \quad r=4$
- $K=\mathbb{Q}(\sqrt{5}) \quad r=3$

More general universal forms exist over any K

Universal forms

Questions.

(1) Kitaoka's Conjecture: There are only finitely many K with universal ternary form
(2) How does the minimal number of variables r depend on K ?
(3) Is there a variant of 290 Theorem?

Previous results.

- Earnest-Khosravani (1997): no ternary universal forms over fields of odd degree
- Chan-Kim-Raghavan (1996): Determined all ternary universal forms over quadratic fields $\mathbb{Q}(\sqrt{D})$ (only $D=2,3,5$)
- Kim (1999): 8-ary universal form over each $\mathbb{Q}\left(\sqrt{n^{2}-1}\right)$
- Kim-Kim-Park (2021): only finitely many $\mathbb{Q}(\sqrt{D})$ admit 7-ary universal forms

Outline

(1) Introduction

(2) Large ranks of universal forms

(3) Estimating ranks more precisely

4 Lifting problem

Real quadratic fields

$D>1$ squarefree, $D \equiv 2,3(\bmod 4)$
$K=\mathbb{Q}(\sqrt{D})$
$\mathcal{O}=\mathbb{Z}[\sqrt{D}]=\{a+b \sqrt{D} \mid a, b \in \mathbb{Z}\}$
Want to represent totally positive elements:

$$
\mathcal{O}^{+}=\left\{\alpha \in \mathcal{O} \mid \alpha=a+b \sqrt{D}>0, \alpha^{\prime}=a-b \sqrt{D}>0\right\}
$$

Notation: $\alpha \succ \beta$ iff $\alpha-\beta \in \mathcal{O}^{+}$

Theorem (Blomer-K 2015, K 2016)

For each M there are infinitely many $\mathbb{Q}(\sqrt{D})$ with no universal M-ary form.
Want to explain main ideas behind proof

Tool 1: Indecomposable elements

$\alpha \in \mathcal{O}^{+}$is indecomposable if $\alpha \neq \beta+\gamma$ for $\beta, \gamma \in \mathcal{O}^{+}$
Seems to be the key notion for studying universal forms!
Every unit $\varepsilon \in \mathcal{O}^{+}$is indecomposable:

$$
\begin{aligned}
1 & =N(\varepsilon)=N(\beta+\gamma)=(\beta+\gamma) \cdot(\beta+\gamma)^{\prime} \succ \\
& \succ \beta \beta^{\prime}+\gamma \gamma^{\prime}=N(\beta)+N(\gamma) \geq 2
\end{aligned}
$$

Why useful?

$Q\left(X_{1}, \ldots, X_{r}\right)=a_{1} X_{1}^{2}+a_{2} X_{2}^{2}+\cdots+a_{r} X_{r}^{2}$ universal diagonal form $\alpha=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{r} x_{r}^{2}$ indecomposable Thus $\alpha=a_{i} x_{i}^{2}$ is essentially one of the coefficients!

Tool 2: Continued fractions

Periodic continued fraction

$$
\sqrt{D}=\left[u_{0}, \overline{u_{1}, u_{2}, \ldots, u_{s-1}, 2 u_{0}}\right]=u_{0}+\frac{1}{u_{1}+\frac{1}{u_{2}+\cdots}} .
$$

Convergents $\frac{p_{i}}{q_{i}}:=\left[u_{0}, u_{1}, u_{2}, \ldots, u_{i}\right]$ to the continued fraction give

- good approximations $\frac{p_{i}}{q_{i}}$ to \sqrt{D} and
- indecomposables, eg $\alpha_{i}:=p_{i}+q_{i} \sqrt{D}$ (for odd i)

Recall: $\alpha_{s-1}=$ fundamental unit
Explicitly,
$\alpha_{i, r}:=\alpha_{i}+r \alpha_{i+1}$ for odd $i, 0 \leq r<u_{i+2}$
are all indecomposables

Theorem (Hejda-K 2020)

The additive semigroup $\mathcal{O}^{+}(+)$uniquely determines the real quadratic field $K=\mathbb{Q}(\sqrt{D})$.

Tool 3: Minimal vectors of \mathcal{O}-lattices

Quadratic \mathcal{O}-lattice (L, Q) :

- $L \simeq \mathcal{O}^{r}$
- $Q: L \rightarrow \mathcal{O}$ totally positive quadratic form on L

Corresponds to usual quadratic forms, but don't need to worry about change of variables

In \mathbb{Z}-lattice, minimal vectors are important, ie $v \in L$ with minimal $Q(v)>0$.
Eg. kissing number $=$ maximal possible number of minimal vectors in L of given rank r

How to define minimal vectors in general?

Tool 3: Minimal vectors of \mathcal{O}-lattices 2

How to define "minimal vectors" in general?
Compose with trace!
$\operatorname{Tr} \circ Q: L \rightarrow \mathbb{Z}$

More generally,
codifferent $\mathcal{O}^{\vee}:=\{\delta \in K: \operatorname{Tr}(\delta \mathcal{O}) \subset \mathbb{Z}\}$
For $\delta \in \mathcal{O}^{\vee,+}$ and $0 \neq v \in L$ have $\operatorname{Tr}(\delta Q(v)) \in \mathbb{Z}_{>0}$
\Rightarrow can take vectors v with $\operatorname{Tr}(\delta Q(v))$ minimal, ideally $\operatorname{Tr}(\delta Q(v))=1$
v "minimal" (for some δ) $\Rightarrow Q(v)$ indecomposable
Converse holds in quadratic fields (K-Tinková), not in general

Summary

Theorem (Blomer-K 2015, K 2016)

For each M there are infinitely many $\mathbb{Q}(\sqrt{D})$ with no universal M-ary form.

Proof by K-Tinková (2021):

Take $\sqrt{D}=\left[u_{0}, \overline{u_{1}, u_{2}, \ldots, u_{s-1}, 2 u_{0}}\right]$
For fixed odd i, have $u:=u_{i+2}$ indecomposables $\alpha_{i, r}$ and uniform δ such that $\operatorname{Tr}\left(\delta \alpha_{i, r}\right)=1$ for all r

Let (L, Q) be universal \mathcal{O}-lattice of rank R
\Longrightarrow have $\alpha_{i, r}=Q\left(v_{r}\right)$ for $v_{r} \in L$
$\operatorname{Tr}(\delta Q)$ gives \mathbb{Z}-lattice of rank $2 R$
with u vectors of length 1 (corresponding to v_{r})
Kissing number estimates $\Longrightarrow R \geq \sqrt{u} / 2$

Suffices to find D with eg u_{1} large to finish proof

Outline

(1) Introduction

(2) Large ranks of universal forms

(3) Estimating ranks more precisely

4 Lifting problem

Constructing universal forms

$\sqrt{D}=\left[u_{0}, \overline{u_{1}, u_{2}, \ldots, u_{s-1}, 2 u_{0}}\right]$
$S=$ (finite) set of all indecomposables σ up to multiplication by squares of units
$U_{D}:=\# S= \begin{cases}2\left(u_{1}+u_{3}+\cdots+u_{s-1}\right) & \text { if } s \text { is even } \\ 2 u_{0}+u_{1}+u_{2}+\cdots+u_{s-1} & \text { if } s \text { is odd }\end{cases}$
Theorem (Kim 1999, Blomer-K 2018, K-Tinková 2021)

$$
\sum_{\sigma \in S} \sigma\left(x_{1 j}^{2}+x_{2 j}^{2}+x_{3 j}^{2}+x_{4 j}^{2}+x_{5 j}^{2}\right)
$$

is universal and has $5 U_{D}$ variables

Sums of coefficients

$$
U_{D}=\# S= \begin{cases}2\left(u_{1}+u_{3}+\cdots+u_{s-1}\right) & \text { if } s \text { is even } \\ 2 u_{0}+u_{1}+u_{2}+\cdots+u_{s-1} & \text { if } s \text { is odd }\end{cases}
$$

How large is U_{D} ? Can we get a corresponding lower bound on rank?

Theorem (Blomer-K 2018)

- Each diagonal universal quadratic form has at least $C U_{D}^{*}$ variables, where U_{D}^{*} is the same sum of u_{i} as U_{D}, but only over coefficients $u_{i} \geq D^{1 / 8+\varepsilon}$.
- $U_{D} \leq c \sqrt{D}(\log D)^{2}$
- If s is odd, then $U_{D}^{*} \geq \sqrt{D}$.

Expect (very imprecisely) $U_{D} \approx U_{D}^{*} \approx \frac{\sqrt{D} \log D}{h}(+\sqrt{D}$ if s is odd)
Indecomposables roughly correspond to principal ideals of norm $\ll \sqrt{D}$, should have \sqrt{D} / h of them

Higher degrees

K totally real number field of degree n over \mathbb{Q} $m(K)=$ minimal number of variables of universal form

Complicated, because continued fractions don't work.
Partial results on large number of variables:

- Yatsyna (2019): $n=3$
- K-Svoboda (2019): $n=2^{k}$
- K (2021): $\quad n$ divisible by 2 or 3

Theorem (K-Tinková 2020)

Let $a \geq-1$ and consider simplest cubic field $K=\mathbb{Q}(\alpha)$ with $\alpha^{3}-a \alpha^{2}-(a+3) \alpha-1=0$ (and $a^{2}+3 a+9$ squarefree). Then

$$
\frac{\sqrt{a^{2}+3 a+8}}{3 \sqrt{2}}<m(K) \leq 3\left(a^{2}+3 a+6\right)
$$

Outline

(1) Introduction

(2) Large ranks of universal forms

(3) Estimating ranks more precisely

4 Lifting problem

Lifting problem

\mathbb{Z}-form $=$ positive definite form with \mathbb{Z}-coefficients

$$
Q\left(X_{1}, \ldots, X_{r}\right)=a_{11} X_{1}^{2}+a_{12} X_{1} X_{2}+a_{22} X_{2}^{2}+\ldots \text { with } a_{i j} \in \mathbb{Z}
$$

Question. (The lifting problem)
Can a \mathbb{Z}-form be universal over K ?
Siegel: sum of squares NOT, unless $K=\mathbb{Q}$ or $\mathbb{Q}(\sqrt{5})$

Theorem (K-Yatsyna 2021)

$K=$ totally real number field of degree n with a universal \mathbb{Z}-form.

- If $n=2$, then $K=\mathbb{Q}(\sqrt{5})$.
- If $n=3,4,5,7$ and K has principal codifferent ideal, then $K=\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)\left(\right.$ where $\left.\zeta_{7}=e^{2 \pi i / 7}\right)$
- $X^{2}+Y^{2}+Z^{2}+W^{2}+X Y+X Z+X W$ is universal over $\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)$

Tool 4: Zeta functions

Dedekind zeta-function:

$$
\zeta_{K}(s)=\sum_{I} \frac{1}{N(I)^{s}}=\prod_{P} \frac{1}{1-N(P)^{-s}} \text { for real part of } s>1
$$

Siegel (1969): formula for $\zeta_{K}(2)$ as a sum of trace 1 elements (for $n=2,3,4,5,7$):

$$
\zeta_{K}(2)=(-1)^{n} \pi^{2 n} 2^{n+2} b_{n}\left|\Delta_{K}\right|^{-3 / 2} \sum_{\alpha \in \mathcal{O}_{K}^{\vee,+}, \operatorname{Tr}(\alpha)=1} \sigma\left((\alpha)\left(\mathcal{O}_{K}^{\vee}\right)^{-1}\right)
$$

Used to prove our Theorem (K-Yatsyna)
$X^{2}+Y^{2}+Z^{2}+W^{2}+X Y+X Z+X W$ over $\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)$
is the only form in its genus
In higher degrees $n, \zeta_{K}(2)$ involves also elements of trace $2,3, \ldots$

Weak Lifting Problem

Theorem (K-Yatsyna 2021)

For each m, n, there are at most finitely many totally real number fields K of degree n with a \mathbb{Z}-form that represents all of $m \mathcal{O}^{+}$.

Sketch of proof.

$\|\alpha\|=\max _{\sigma}(|\sigma(\alpha)|)$ for $\sigma: K \hookrightarrow \mathbb{R}$

- There is k such that $k Q$ is sum of squares of linear forms \Longrightarrow suffices to prove for sum of squares $X_{1}^{2}+\cdots+X_{r}^{2}$
- $E \subset K$ subfield generated by all elements $\alpha \in K$ s.t. $\|\alpha\|<X$ only finitely many such $\alpha \Longrightarrow$ finitely many possible E
- can assume $E \subsetneq K$; let $\beta \in \mathcal{O} \backslash E$ have smallest $\|\beta\|=Y \geq X$
- $m k(\beta+N)=\alpha_{1}^{2}+\cdots+\alpha_{r}^{2}$, some $\alpha_{i} \notin E$
- $3 m k Y>\|m k(\beta+N)\| \geq\left\|\alpha_{i}\right\|^{2} \geq Y^{2}$, contradiction

Kitaoka's Conjecture

Conjecture. There are only finitely many K with universal ternary form

Theorem (K-Yatsyna 2021, "Weak Kitaoka")

For each n, there are at most finitely many totally real number fields K of degree n with universal ternary form Q.

Basic idea.

Q represents $1,2, \ldots, 290$
Excluding finitely many K,
this representation is over a proper subfield $E_{1} \subsetneq K$.
Consider corresponding subform Q_{1} over E_{1}

Two possibilities:
a) Q_{1} is universal ternary over $E_{1} \Longrightarrow$ can use Weak Lifting Theorem
b) else consider representation of "290-set" for E_{1}
again over a proper subfield $E_{1} \subsetneq E_{2} \subsetneq K$
Continue to get finite list of possibilities for K

Thanks

Thanks for your attention!

धन्यवाद
MOB
Joyeux anniversaire, professeur Waldschmidt !

