Universal quadratic forms over number fields

Vítězslav Kala

Charles University, Prague Czechia

https://www1.karlin.mff.cuni.cz/~kala/web/

International Conference on Class Groups of Number Fields and Related Topics October 24, 2021

Outline

- Introduction
- 2 Large ranks of universal forms
- Stimating ranks more precisely
- 4 Lifting problem

Universal quadratic forms

Quadratic form
$$Q(X_1,...,X_r) = a_{11}X_1^2 + a_{12}X_1X_2 + a_{22}X_2^2 + ...$$
 with $a_{ij} \in \mathbb{Z}$

Which integers are represented?

A quadratic form is *universal* if it represents all positive integers.

Many indefinite forms, eg. $X^2 - Y^2 - dZ^2$ with $4 \nmid d$.

More interesting are positive definite forms.

- No universal positive form in 3 variables
- Lagrange (1770): $X^2 + Y^2 + Z^2 + T^2$
- Ramanujan, Dickson (1916): classified quaternary universal positive diagonal forms, eg. $X^2 + 2Y^2 + 4Z^2 + dT^2$ with $d \le 14$

290 Theorem (Bhargava-Hanke 2011)

A positive definite quadratic form over \mathbb{Z} is universal \iff it represents $1, 2, 3, \dots, 290$.

Quadratic forms over number fields

K = totally real number field $\mathcal{O} = \text{ring of integers in } K$

Quadratic form
$$Q(X_1,\ldots,X_r)=a_{11}X_1^2+a_{12}X_1X_2+a_{22}X_2^2+\ldots$$
 with $a_{ij}\in\mathcal{O}$ is *universal* if

- it is totally positive definite and
- ullet represents all totally positive elements of ${\cal O}$

How about sum of squares $X_1^2 + X_2^2 + \cdots + X_r^2$? Siegel (1945): Universal only for

- $K = \mathbb{Q}$ r = 4
- $K = \mathbb{Q}(\sqrt{5})$ r = 3

More general universal forms exist over any K

Universal forms

Questions.

- Kitaoka's Conjecture: There are only finitely many *K* with universal *ternary* form
- ② How does the minimal number of variables r depend on K?
- Is there a variant of 290 Theorem?

Previous results.

- Earnest–Khosravani (1997): no ternary universal forms over fields of odd degree
- Chan–Kim–Raghavan (1996): Determined all ternary universal forms over quadratic fields $\mathbb{Q}(\sqrt{D})$ (only D=2,3,5)
- Kim (1999): 8-ary universal form over each $\mathbb{Q}(\sqrt{n^2-1})$
- Kim-Kim-Park (2021): only finitely many $\mathbb{Q}(\sqrt{D})$ admit 7-ary universal forms

Outline

- Introduction
- 2 Large ranks of universal forms
- Estimating ranks more precisely
- 4 Lifting problem

Real quadratic fields

$$D>1$$
 squarefree, $D\equiv 2,3\pmod 4$ $\mathcal{K}=\mathbb{Q}(\sqrt{D})$ $\mathcal{O}=\mathbb{Z}[\sqrt{D}]=\{a+b\sqrt{D}\mid a,b\in\mathbb{Z}\}$

Want to represent totally positive elements:

$$\mathcal{O}^+ = \{\alpha \in \mathcal{O} \mid \alpha = a + b\sqrt{D} > 0, \alpha' = a - b\sqrt{D} > 0\}.$$

Notation: $\alpha \succ \beta$ iff $\alpha - \beta \in \mathcal{O}^+$

Theorem (Blomer-K 2015, K 2016)

For each M there are infinitely many $\mathbb{Q}(\sqrt{D})$ with no universal M-ary form.

Want to explain main ideas behind proof

Tool 1: Indecomposable elements

 $\alpha \in \mathcal{O}^+$ is indecomposable if $\alpha \neq \beta + \gamma$ for $\beta, \gamma \in \mathcal{O}^+$

Seems to be the key notion for studying universal forms!

Every unit $\varepsilon \in \mathcal{O}^+$ is indecomposable:

$$1 = N(\varepsilon) = N(\beta + \gamma) = (\beta + \gamma) \cdot (\beta + \gamma)' \succ \\ \succ \beta\beta' + \gamma\gamma' = N(\beta) + N(\gamma) \ge 2$$

Why useful?

 $Q(X_1, ..., X_r) = a_1 X_1^2 + a_2 X_2^2 + \cdots + a_r X_r^2$ universal diagonal form $\alpha = a_1 x_1^2 + a_2 x_2^2 + \cdots + a_r x_r^2$ indecomposable Thus $\alpha = a_i x_i^2$ is essentially one of the coefficients!

Tool 2: Continued fractions

Periodic continued fraction

$$\sqrt{D} = [u_0, \overline{u_1, u_2, \dots, u_{s-1}, 2u_0}] = u_0 + \frac{1}{u_1 + \frac{1}{u_2 + \dots}}.$$

Convergents $\frac{p_i}{q_i} := [u_0, u_1, u_2, \dots, u_i]$ to the continued fraction give

- ullet good approximations $rac{p_i}{q_i}$ to \sqrt{D} and
- indecomposables, eg $\alpha_i := p_i + q_i \sqrt{D}$ (for odd i)

Recall: $\alpha_{s-1} = \text{fundamental unit}$

Explicitly,

$$\alpha_{i,r} := \alpha_i + r\alpha_{i+1}$$
 for odd i , $0 \le r < u_{i+2}$ are all indecomposables

Theorem (Hejda-K 2020)

The additive semigroup $\mathcal{O}^+(+)$ uniquely determines the real quadratic field $K = \mathbb{Q}(\sqrt{D})$.

Tool 3: Minimal vectors of \mathcal{O} -lattices

Quadratic \mathcal{O} -lattice (L, Q):

- $L \simeq \mathcal{O}^r$
- $Q: L \to \mathcal{O}$ totally positive quadratic form on L

Corresponds to usual quadratic forms, but don't need to worry about change of variables

In \mathbb{Z} -lattice, minimal vectors are important, ie $v \in L$ with minimal Q(v) > 0.

Eg. $kissing\ number = maximal\ possible\ number\ of\ minimal\ vectors\ in\ L$ of given rank r

How to define minimal vectors in general?

Tool 3: Minimal vectors of \mathcal{O} -lattices 2

How to define "minimal vectors" in general? Compose with trace! $\operatorname{Tr} \circ Q: L \to \mathbb{Z}$

More generally,

codifferent
$$\mathcal{O}^{\vee} := \{ \delta \in K : \operatorname{Tr}(\delta \mathcal{O}) \subset \mathbb{Z} \}$$

For $\delta \in \mathcal{O}^{\vee,+}$ and $0 \neq v \in L$ have $\operatorname{Tr}(\delta Q(v)) \in \mathbb{Z}_{>0}$

 \Rightarrow can take vectors v with ${\sf Tr}(\delta Q(v))$ minimal, ideally ${\sf Tr}(\delta Q(v))=1$

v "minimal" (for some δ) $\Rightarrow Q(v)$ indecomposable Converse holds in quadratic fields (K-Tinková), not in general

Summary

Theorem (Blomer-K 2015, K 2016)

For each M there are infinitely many $\mathbb{Q}(\sqrt{D})$ with no universal M-ary form.

Proof by K-Tinková (2021):

Take
$$\sqrt{D} = [u_0, \overline{u_1, u_2, \dots, u_{s-1}, 2u_0}]$$

For fixed odd i, have $u := u_{i+2}$ indecomposables $\alpha_{i,r}$ and uniform δ such that $\text{Tr}(\delta \alpha_{i,r}) = 1$ for all r

Let
$$(L,Q)$$
 be universal \mathcal{O} -lattice of rank R

$$\implies$$
 have $\alpha_{i,r} = Q(v_r)$ for $v_r \in L$

$$\mathsf{Tr}(\delta Q)$$
 gives \mathbb{Z} -lattice of rank $2R$

with
$$u$$
 vectors of length 1 (corresponding to v_r)

Kissing number estimates
$$\implies R \ge \sqrt{u/2}$$

Suffices to find D with eg u_1 large to finish proof

Outline

- Introduction
- 2 Large ranks of universal forms
- 3 Estimating ranks more precisely
- 4 Lifting problem

Constructing universal forms

$$\sqrt{D} = [u_0, \overline{u_1, u_2, \dots, u_{s-1}, 2u_0}]$$

S = (finite) set of all indecomposables σ up to multiplication by squares of units

$$U_D := \#S = egin{cases} 2(u_1 + u_3 + \dots + u_{s-1}) & ext{if s is even} \\ 2u_0 + u_1 + u_2 + \dots + u_{s-1} & ext{if s is odd} \end{cases}$$

Theorem (Kim 1999, Blomer-K 2018, K-Tinková 2021)

$$\sum_{\sigma \in S} \sigma \left(x_{1j}^2 + x_{2j}^2 + x_{3j}^2 + x_{4j}^2 + x_{5j}^2 \right)$$

is universal and has 5UD variables

Sums of coefficients

$$U_D = \#S = \begin{cases} 2(u_1 + u_3 + \dots + u_{s-1}) & \text{if } s \text{ is even} \\ 2u_0 + u_1 + u_2 + \dots + u_{s-1} & \text{if } s \text{ is odd} \end{cases}$$

How large is U_D ? Can we get a corresponding lower bound on rank?

Theorem (Blomer-K 2018)

- Each diagonal universal quadratic form has at least CU_D^* variables, where U_D^* is the same sum of u_i as U_D , but only over coefficients $u_i \geq D^{1/8+\varepsilon}$.
- $U_D \leq c\sqrt{D}(\log D)^2$
- If s is odd, then $U_D^* \ge \sqrt{D}$.

Expect (very imprecisely) $U_D pprox U_D^* pprox rac{\sqrt{D}\log D}{h}(+\sqrt{D} ext{ if } s ext{ is odd})$

Indecomposables roughly correspond to principal ideals of norm $\ll \sqrt{D}$, should have \sqrt{D}/h of them

Higher degrees

K totally real number field of degree n over \mathbb{Q} m(K) = minimal number of variables of universal form

Complicated, because continued fractions don't work. Partial results on large number of variables:

- Yatsyna (2019): n = 3
- K-Svoboda (2019): $n = 2^k$
- K (2021): *n* divisible by 2 or 3

Theorem (K-Tinková 2020)

Let $a \ge -1$ and consider $simplest\ cubic\ field\ K = \mathbb{Q}(\alpha)$ with $\alpha^3 - a\alpha^2 - (a+3)\alpha - 1 = 0$ (and $a^2 + 3a + 9$ squarefree). Then

$$\frac{\sqrt{a^2+3a+8}}{3\sqrt{2}} < m(K) \le 3(a^2+3a+6).$$

Outline

- Introduction
- 2 Large ranks of universal forms
- Stimating ranks more precisely
- 4 Lifting problem

Lifting problem

 \mathbb{Z} -form = positive definite form with \mathbb{Z} -coefficients

$$Q(X_1,\ldots,X_r)=a_{11}X_1^2+a_{12}X_1X_2+a_{22}X_2^2+\ldots$$
 with $a_{ij}\in\mathbb{Z}$

Question. (The lifting problem)

Can a \mathbb{Z} -form be universal over K?

Siegel: sum of squares NOT, unless $K = \mathbb{Q}$ or $\mathbb{Q}(\sqrt{5})$

Theorem (K-Yatsyna 2021)

 $K = \text{totally real number field of degree n with a universal } \mathbb{Z}\text{-form}.$

- If n=2, then $K=\mathbb{Q}(\sqrt{5})$.
- If n=3,4,5,7 and K has principal codifferent ideal, then $K=\mathbb{Q}(\zeta_7+\zeta_7^{-1})$ (where $\zeta_7=e^{2\pi i/7}$)
- $X^2 + Y^2 + Z^2 + W^2 + XY + XZ + XW$ is universal over $\mathbb{Q}(\zeta_7 + \zeta_7^{-1})$

Tool 4: Zeta functions

Dedekind zeta-function:

$$\zeta_{\mathcal{K}}(s) = \sum_{I} rac{1}{\mathcal{N}(I)^s} = \prod_{P} rac{1}{1 - \mathcal{N}(P)^{-s}} ext{ for real part of } s > 1$$

Siegel (1969): formula for $\zeta_K(2)$ as a sum of trace 1 elements (for n=2,3,4,5,7):

$$\zeta_{\mathcal{K}}(2) = (-1)^n \pi^{2n} 2^{n+2} b_n |\Delta_{\mathcal{K}}|^{-3/2} \sum_{\alpha \in \mathcal{O}_{\mathcal{K}}^{\vee,+}, \mathsf{Tr}(\alpha) = 1} \sigma((\alpha) (\mathcal{O}_{\mathcal{K}}^{\vee})^{-1})$$

Used to prove our Theorem (K-Yatsyna) $X^2+Y^2+Z^2+W^2+XY+XZ+XW \text{ over } \mathbb{Q}(\zeta_7+\zeta_7^{-1})$ is the only form in its genus

In higher degrees n, $\zeta_K(2)$ involves also elements of trace $2, 3, \ldots$

Weak Lifting Problem

Theorem (K-Yatsyna 2021)

For each m, n, there are at most finitely many totally real number fields K of degree n with a \mathbb{Z} -form that represents all of $m\mathcal{O}^+$.

Sketch of proof.

$$||\alpha|| = \max_{\sigma}(|\sigma(\alpha)|)$$
 for $\sigma : K \hookrightarrow \mathbb{R}$

- There is k such that kQ is sum of squares of linear forms \implies suffices to prove for sum of squares $X_1^2 + \cdots + X_r^2$
- $E \subset K$ subfield generated by all elements $\alpha \in K$ s.t. $||\alpha|| < X$ only finitely many such $\alpha \Longrightarrow$ finitely many possible E
- can assume $E \subsetneq K$; let $\beta \in \mathcal{O} \setminus E$ have smallest $||\beta|| = Y \ge X$
- $mk(\beta + N) = \alpha_1^2 + \cdots + \alpha_r^2$, some $\alpha_i \notin E$
- $3mkY > ||mk(\beta + N)|| \ge ||\alpha_i||^2 \ge Y^2$, contradiction

Kitaoka's Conjecture

Conjecture. There are only finitely many K with universal ternary form

Theorem (K-Yatsyna 2021, "Weak Kitaoka")

For each n, there are at most finitely many totally real number fields K of degree n with universal ternary form Q.

Basic idea.

Q represents $1, 2, \ldots, 290$

Excluding finitely many K,

this representation is over a proper subfield $E_1 \subseteq K$.

Consider corresponding subform Q_1 over E_1

Two possibilities:

- a) Q_1 is universal ternary over $E_1 \Longrightarrow$ can use Weak Lifting Theorem
- b) else consider representation of "290-set" for E_1 again over a proper subfield $E_1 \subseteq E_2 \subseteq K$

Continue to get finite list of possibilities for K

Thanks

Thanks for your attention!

धन्यवाद നന്ദി

Joyeux anniversaire, professeur Waldschmidt!