

Introduction to L-functions and Langlands program I

Vita Kala

Charles University, Prague
sites.google.com/site/vitakala/

May 17, 2020

Outline

(1) Riemann zeta-function

(2) Dirichlet L-functions

(3) Artin L-functions

Existence of primes

Euclid: There are infinitely many primes How many are there?
$\pi(x)=$ number of primes $p \leq x$

Theorem (Prime number theorem, Hadamard, de la Vallée Poussin 1896)

Proof based on idea of Riemann (1859) to study zeta-function

Existence of primes

Euclid: There are infinitely many primes How many are there?
$\pi(x)=$ number of primes $p \leq x$

Theorem (Prime number theorem, Hadamard, de la Vallée Poussin 1896)

$$
\begin{array}{r}
\pi(x) \sim \frac{x}{\log x}, \text { i.e., } \\
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
\end{array}
$$

Proof based on idea of Riemann (1859) to study zeta-function

Definition

Definition (Riemann ζ-function)

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

s real: converges for $s>1$
Studied by Euler
Well-known special values

$$
\sum \frac{1}{n^{2}}=\zeta(2)=\frac{\pi^{2}}{6}
$$

More useful to take s complex (Riemann 1859)
Absolutely convergent for $\operatorname{Re}(s)>1$
$\Rightarrow \zeta(s)$ is holomorphic for $\operatorname{Re}(s)>1$, i.e.,
has complex derivative

Definition

Definition (Riemann ζ-function)

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

s real: converges for $s>1$
Studied by Euler
Well-known special values

$$
\sum \frac{1}{n^{2}}=\zeta(2)=\frac{\pi^{2}}{6}
$$

More useful to take s complex (Riemann 1859)
Absolutely convergent for $\operatorname{Re}(s)>1$
$\Rightarrow \zeta(s)$ is holomorphic for $\operatorname{Re}(s)>1$, i.e.,
has complex derivative

WHY: Euler product

What has $\zeta(s)$ to do with primes?!

Euler product

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

for $\operatorname{Re}(s)>1$,
p runs over all primes.
Proof: Geometric series

Multiply out and rearrange RHS to get

WHY: Euler product

What has $\zeta(s)$ to do with primes?!

Euler product

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

for $\operatorname{Re}(s)>1$,
p runs over all primes.
Proof: Geometric series

$$
\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}=\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\ldots\right)
$$

Multiply out and rearrange RHS to get

$$
\zeta(s)=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{2^{2 s}}+\frac{1}{5^{s}}+\frac{1}{2^{s}} \cdot \frac{1}{3^{s}}+\cdots
$$

Euler product and primes

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

\Rightarrow there are infinitely many primes:
If finitely many, then RHS at $s=1$ converges $\prod_{p} \frac{1}{1-\frac{1}{p}}<\infty$
But harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, i.e., $\zeta(1)=\infty$.
First indication that understanding $\zeta(s)$ around $s=1$ is useful for number of primes $\pi(x)$

Euler product and primes

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-\frac{1}{p^{s}}}
$$

\Rightarrow there are infinitely many primes:
If finitely many, then RHS at $s=1$ converges $\prod_{p} \frac{1}{1-\frac{1}{p}}<\infty$
But harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, i.e., $\zeta(1)=\infty$.
First indication that understanding $\zeta(s)$ around $s=1$ is useful for number of primes $\pi(x)$

Meromorphic continuation

Second key property of ζ-function

Definition/Theorem: Meromorphic continuation

$\zeta(s)$ has meromorphic continuation, i.e., there is meromorphic function $\tilde{\zeta}(s)$ that extends $\tilde{\zeta}(s)=\zeta(s)$ for $\operatorname{Re}(s)>1$.

Recall $f: \mathbb{C} \rightarrow \mathbb{C}$ is meromorphic, if defined and has complex derivative for all points $s \in \mathbb{C}$ EXCEPT for a discrete set of poles s_{0} at which behaves as $\frac{a}{\left(s-s_{0}\right)^{k}}$ for some $k \in \mathbb{N}$ and $a \in \mathbb{C}$.
Continuation of Riemann zeta-function has only one pole of order $k=1$
(with residue $a=1$):
Well-known $s_{0}=1$.
Meromorphic continuation is unique (if exists), so let's not distinguish

Meromorphic continuation

Second key property of ζ-function

Definition/Theorem: Meromorphic continuation

$\zeta(s)$ has meromorphic continuation, i.e., there is meromorphic function $\tilde{\zeta}(s)$ that extends $\tilde{\zeta}(s)=\zeta(s)$ for $\operatorname{Re}(s)>1$.

Recall $f: \mathbb{C} \rightarrow \mathbb{C}$ is meromorphic, if defined and has complex derivative for all points $s \in \mathbb{C}$ EXCEPT for a discrete set of poles s_{0} at which behaves as $\frac{a}{\left(s-s_{0}\right)^{k}}$ for some $k \in \mathbb{N}$ and $a \in \mathbb{C}$. Continuation of Riemann zeta-function has only one pole of order $k=1$ (with residue $a=1$): Well-known $s_{0}=1$.
Meromorphic continuation is unique (if exists), so let's not distinguish

Meromorphic continuation

Second key property of ζ-function

Definition/Theorem: Meromorphic continuation

$\zeta(s)$ has meromorphic continuation, i.e., there is meromorphic function $\tilde{\zeta}(s)$ that extends $\tilde{\zeta}(s)=\zeta(s)$ for $\operatorname{Re}(s)>1$.

Recall $f: \mathbb{C} \rightarrow \mathbb{C}$ is meromorphic, if defined and has complex derivative for all points $s \in \mathbb{C}$ EXCEPT for a discrete set of poles s_{0} at which behaves as $\frac{a}{\left(s-s_{0}\right)^{k}}$ for some $k \in \mathbb{N}$ and $a \in \mathbb{C}$.
Continuation of Riemann zeta-function has only one pole of order $k=1$ (with residue $a=1$):
Well-known $s_{0}=1$.
Meromorphic continuation is unique (if exists), so let's not distinguish $\zeta(s):=\tilde{\zeta}(s)$.

Functional equation

Theorem (Functional equation)

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

where

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

is usual Γ-function that extends factorial: $\Gamma(n)=(n-1)$! for $n \in \mathbb{N}$.

LOOKS VERY COMPLICATED, SHOULD I STOP WATCHING?

NOT YET! Key: gives explicit relation between $\zeta(s)$ and $\zeta(1-s)$. Ramanujan's "identity"

Functional equation

Theorem (Functional equation)

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

where

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

is usual Γ-function that extends factorial: $\Gamma(n)=(n-1)$! for $n \in \mathbb{N}$.

LOOKS VERY COMPLICATED, SHOULD I STOP WATCHING?

NOT YET! Key: gives explicit relation between $\zeta(s)$ and $\zeta(1-s)$. Ramanujan's "identity"

Functional equation

Theorem (Functional equation)

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

where

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

is usual Γ-function that extends factorial: $\Gamma(n)=(n-1)$! for $n \in \mathbb{N}$.

LOOKS VERY COMPLICATED, SHOULD I STOP WATCHING?

NOT YET! Key: gives explicit relation between $\zeta(s)$ and $\zeta(1-s)$.
Ramanujan's "identity"

$$
1+2+3+4+5+\cdots=\zeta(-1)=2^{-1} \pi^{-2} \sin \left(-\frac{\pi}{2}\right) \Gamma(2) \zeta(2)=-\frac{1}{12}
$$

Critical strip

Functional equation $\zeta(s)=$ blabla $\cdot \zeta(1-s)$,
\Rightarrow can use $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ for $\operatorname{Re}(s)>1$ to compute values for $\operatorname{Re}(s)<0$.

Between is critical strip $0<\operatorname{Re}(s)<1$.
Very mysterious behavior of zeta

Riemann hypothesis

s is zero of ζ-function in critical strip, i.e.,

$$
\zeta(s)=0 \text { for } 0<\operatorname{Re}(s)<1
$$

Then s lies on the center line $\operatorname{Re}(s)=\frac{1}{2}$.

Riemann hypothesis

Riemann hypothesis

s is zero of ζ-function in critical strip, i.e.,

$$
\zeta(s)=0 \text { for } 0<\operatorname{Re}(s)<1
$$

Then s lies on the center line $\operatorname{Re}(s)=\frac{1}{2}$.

WHY PROVE?

Already $\zeta(s) \neq 0$ for $\operatorname{Re}(s)=1 \Leftrightarrow$ PNT
3. develop tools that generalize to other L-functions

Riemann hypothesis

Riemann hypothesis

s is zero of ζ-function in critical strip, i.e.,

$$
\zeta(s)=0 \text { for } 0<\operatorname{Re}(s)<1
$$

Then s lies on the center line $\operatorname{Re}(s)=\frac{1}{2}$.

WHY PROVE?

1. get famous and rich
2. understand asymptotics of primes:
get precise error terms for PNT $\pi(x) \sim \frac{x}{\log x}$

Already $\zeta(s) \neq 0$ for $\operatorname{Re}(s)=1 \Leftrightarrow$ PNT
3. develop tools that generalize to other L-functions

Riemann hypothesis

Riemann hypothesis

s is zero of ζ-function in critical strip, i.e.,

$$
\zeta(s)=0 \text { for } 0<\operatorname{Re}(s)<1
$$

Then s lies on the center line $\operatorname{Re}(s)=\frac{1}{2}$.

WHY PROVE?

1. get famous and rich
2. understand asymptotics of primes:
get precise error terms for PNT $\pi(x) \sim \frac{x}{\log x}$

$$
\pi(x)=\frac{x}{\log x}+\frac{1!x}{(\log x)^{2}}+\frac{2!x}{(\log x)^{3}}+\cdots+O(\sqrt{x} \log x)
$$

Already $\zeta(s) \neq 0$ for $\operatorname{Re}(s)=1 \Leftrightarrow$ PNT
3. develop tools that generalize to other L-functions

Riemann hypothesis

Riemann hypothesis

s is zero of ζ-function in critical strip, i.e.,

$$
\zeta(s)=0 \text { for } 0<\operatorname{Re}(s)<1
$$

Then s lies on the center line $\operatorname{Re}(s)=\frac{1}{2}$.

WHY PROVE?

1. get famous and rich
2. understand asymptotics of primes:
get precise error terms for PNT $\pi(x) \sim \frac{x}{\log x}$

$$
\pi(x)=\frac{x}{\log x}+\frac{1!x}{(\log x)^{2}}+\frac{2!x}{(\log x)^{3}}+\cdots+O(\sqrt{x} \log x)
$$

Already $\zeta(s) \neq 0$ for $\operatorname{Re}(s)=1 \Leftrightarrow$ PNT
3. develop tools that generalize to other L-functions

Outline

(1) Riemann zeta-function

(2) Dirichlet L-functions

(3) Artin L-functions

Primes in arithmetic progressions

Theorem (Dirichlet's theorem on arithmetic progressions, 1837)

There are infinitely many primes of the form nt + a for every coprime $n, a \in \mathbb{N}$.

Some cases, e.g., $4 t-1$ or $n t+1$ elementary (using cyclotomic polynomials)
In general requires L-functions
Even stronger
Theorem (PNT for arithmetic progressions)

Primes in arithmetic progressions

Theorem (Dirichlet's theorem on arithmetic progressions, 1837)
There are infinitely many primes of the form nt + a for every coprime $n, a \in \mathbb{N}$.

Some cases, e.g., $4 t-1$ or $n t+1$ elementary (using cyclotomic polynomials)
In general requires L-functions
Even stronger
Theorem (PNT for arithmetic progressions)
(Number of primes $p=n t+a \leq x$) $\sim \frac{1}{\varphi(n)} \cdot \frac{x}{\log x}$

Characters

Definition

Dirichlet character modulo n is a map $\chi: \mathbb{N} \rightarrow \mathbb{C}$ such that for all positive integers u, v and k :

- χ is periodic modulo $n: \chi(u+k n)=\chi(u)$,
- χ is multiplicative: $\chi(u v)=\chi(u) \chi(v)$,
- $\chi(u) \neq 0$ iff u is coprime with n.

Exercise: All non-zero values of a character χ lie on the unit circle $|z|=1$ and are $\varphi(n)$-th roots of one $e^{2 \pi i r / \varphi(n)}$ (with some $r \in \mathbb{Z}$).

Dirichlet characters are suitable for capturing information modulo n

Examples of Dirichlet characters

Examples:

- Trivial character modulo n

$$
\chi(u)= \begin{cases}1 & \text { if } \operatorname{gcd}(u, n)=1 \\ 0 & \text { if } \operatorname{gcd}(u, n)>1\end{cases}
$$

- Non-trivial character modulo 5

$$
\chi(u)=\left\{\begin{array}{lll}
1 & \text { if } u \equiv 1 & (\bmod 5) \\
i & \text { if } u \equiv 2 & (\bmod 5) \\
-i & \text { if } u \equiv 3 & (\bmod 5) \\
-1 & \text { if } u \equiv 4 & (\bmod 5) \\
0 & \text { if } u \equiv 0 & (\bmod 5)
\end{array}\right.
$$

- Legendre symbol $\left(\frac{u}{p}\right)$ modulo primes p.

Dirichlet L-functions

Riemann $\zeta(s)$ good to study primes, characters χ good for arithmetic progressions \Rightarrow let's combine them!

Definition (Dirichlet 1837)

Dirichlet L-function

$$
L(s, \chi)=\sum_{m=1}^{\infty} \frac{\chi(m)}{m^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}},
$$

absolutely convergent for $\operatorname{Re}(s)>1$.
Notation by L already used by Dirichlet - apparently quite randomly
Examples:
$\chi=$ trivial character modulo $1: 1$
$\chi=$ trivial character modulo $p_{0}:$

Dirichlet L-functions

Riemann $\zeta(s)$ good to study primes, characters χ good for arithmetic progressions \Rightarrow let's combine them!

Definition (Dirichlet 1837)

Dirichlet L-function

$$
L(s, \chi)=\sum_{m=1}^{\infty} \frac{\chi(m)}{m^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}},
$$

absolutely convergent for $\operatorname{Re}(s)>1$.
Notation by L already used by Dirichlet - apparently quite randomly

Examples:
$\chi=$ trivial character modulo 1: $L(s, \chi)=\zeta(s)$
$\chi=$ trivial character modulo $p_{0}: L(s, \chi)=\prod_{p \neq p_{0}} \frac{1}{1-\frac{1}{\rho^{s}}}$

Functional equation

$$
L(s, \chi)=\sum_{m=1}^{\infty} \frac{\chi(m)}{m^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}},
$$

Many analogies with Riemann ζ-function:

- Euler product of degree 1, i.e., we multiply $\frac{1}{P_{p, \chi}\left(p^{-s}\right)}$, where $P_{p, \chi}(X)=1-\chi(p) X$ is polynomial of degree 1 (depending on χ and the prime p).
- Meromorphic continuation of $L(s, \chi)$ to $s \in \mathbb{C}$, in fact holomorphic (i.e., no poles) if χ is non-trivial
- Functional equation,
that relates $L(s, \chi)$ and $L(1-s, \bar{\chi})$
where $\bar{\chi}$ is conjugate character $\bar{\chi}(u):=\overline{\chi(u)}$ (even more technical than FE for $\zeta(s 0)$)

Functional equation

$$
L(s, \chi)=\sum_{m=1}^{\infty} \frac{\chi(m)}{m^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}
$$

Many analogies with Riemann ζ-function:

- Euler product of degree 1, i.e., we multiply $\frac{1}{P_{p, \chi}\left(p^{-s}\right)}$, where $P_{p, \chi}(X)=1-\chi(p) X$ is polynomial of degree 1 (depending on χ and the prime p).
- Meromorphic continuation of $L(s, \chi)$ to $s \in \mathbb{C}$, in fact holomorphic (i.e., no poles) if χ is non-trivial
- Functional equation, that relates $L(s, \chi)$ and $L(1-s, \bar{\chi})$ where $\bar{\chi}$ is conjugate character $\bar{\chi}(u):=\overline{\chi(u)}$. (even more technical than FE for $\zeta(s 0)$)

Proof of Dirichlet's theorem on arithmetic progressions

Theorem

There are infinitely many primes $n t+a$ for every coprime $n, a \in \mathbb{N}$.
Idea of proof: consider

$$
S_{n, a}(s)=\sum_{p \equiv a} \frac{1}{(\bmod n)} \frac{p^{s}}{}
$$

if we prove a pole at $s=1$, there are infinitely many $p \equiv a(\bmod n)$

To isolate AP, use identity

Proof of Dirichlet's theorem on arithmetic progressions

Theorem

There are infinitely many primes $n t+a$ for every coprime $n, a \in \mathbb{N}$.
Idea of proof: consider

$$
S_{n, a}(s)=\sum_{p \equiv a} \frac{1}{(\bmod n)} \frac{p^{s}}{}
$$

if we prove a pole at $s=1$, there are infinitely many $p \equiv a(\bmod n)$
To isolate AP, use identity

$$
\frac{1}{\varphi(n)} \sum_{\chi} \chi(a)^{-1} \cdot \chi(u)= \begin{cases}1 & \text { if } u \equiv a(\bmod n) \\ 0 & \text { else },\end{cases}
$$

where sum is over all characters modulo n.

Proof of Dirichlet's theorem on arithmetic progressions 2

$$
\log L(s, \chi)=\log \left(\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}\right)=-\sum_{p} \log \left(1-\frac{\chi(p)}{p^{s}}\right)
$$

Taylor expansion $-\log (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots$

$$
\log L(s, \chi)=\sum_{p} \frac{\chi(p)}{p^{s}}+\text { small rest }
$$

Proof of Dirichlet's theorem on arithmetic progressions 2

$$
\log L(s, \chi)=\log \left(\prod_{p} \frac{1}{1-\frac{\chi(p)}{p^{s}}}\right)=-\sum_{p} \log \left(1-\frac{\chi(p)}{p^{s}}\right)
$$

Taylor expansion $-\log (1-x)=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots$

$$
\begin{gathered}
\log L(s, \chi)=\sum_{p} \frac{\chi(p)}{p^{s}}+\text { small rest } \\
\frac{1}{\varphi(n)} \sum_{\chi \bmod n} \chi(a)^{-1} \log L(s, \chi) \approx \sum_{p} \frac{1}{\varphi(n) p^{s}} \sum_{\chi \bmod n} \chi(a)^{-1} \chi(p)= \\
=\sum_{p \equiv a \bmod n} \frac{1}{p^{s}}=S_{n, a}(s)
\end{gathered}
$$

Want pole at $s=1 \Rightarrow$ study LHS, key is $L(1, \chi) \neq 0$

Outline

(1) Riemann zeta-function

(2) Dirichlet L-functions

(3) Artin L-functions

Langlands program

Vast web of conjectures
emerging and developing since 1960's
connections between number theory and representation theory 2018 Abel prize for Langlands

Broad goal: understand general L-functions that encode algebraic or geometric information
(primes or solutions to diophantine equations) want Euler Product, Meromorphic Continuation, Functional Equation hard to prove directly
\Rightarrow define analytic L-functions, for which FE easier

For now: what algebraic L-functions?

Cyclotomic fields

$K=\mathbb{Q}\left(e^{2 \pi i / m}\right)$ for some $m \in \mathbb{N}$.
E.g., $m=4 \Rightarrow e^{2 \pi i / 4}=e^{\pi i / 2}=i \Rightarrow K=\mathbb{Q}(i)$

Key property:
Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(e^{2 \pi i / m}\right) / \mathbb{Q}\right)$, i.e., group of all automorphisms of the field $\mathbb{Q}\left(e^{2 \pi i / m}\right)$,
is isomorphic to

$$
\mathbb{Z}_{m}^{*}=\{u \in \mathbb{Z} \mid 0<u<m, \operatorname{gcd}(u, m)=1\}
$$

Easy to describe: $u \in \mathbb{Z}_{m}^{*}$ corresponds to

Cyclotomic fields

$K=\mathbb{Q}\left(e^{2 \pi i / m}\right)$ for some $m \in \mathbb{N}$.
E.g., $m=4 \Rightarrow e^{2 \pi i / 4}=e^{\pi i / 2}=i \Rightarrow K=\mathbb{Q}(i)$

Key property:
Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(e^{2 \pi i / m}\right) / \mathbb{Q}\right)$, i.e., group of all automorphisms of the field $\mathbb{Q}\left(e^{2 \pi i / m}\right)$,
is isomorphic to

$$
\mathbb{Z}_{m}^{*}=\{u \in \mathbb{Z} \mid 0<u<m, \operatorname{gcd}(u, m)=1\}
$$

Easy to describe: $u \in \mathbb{Z}_{m}^{*}$ corresponds to

$$
\begin{gathered}
\varphi_{u}: \mathbb{Q}\left(e^{\frac{2 \pi i}{m}}\right) \rightarrow \mathbb{Q}\left(e^{\frac{2 \pi i}{m}}\right), \\
\varphi_{u}\left(e^{\frac{2 \pi i}{m}}\right)=e^{\frac{2 \pi i u}{m}}
\end{gathered}
$$

Galois representations

In general have Galois extension $K=\mathbb{Q}(\alpha) \supset \mathbb{Q}$ (Galois \Leftrightarrow all roots of minimal polynomial of α lie in K) Galois group $\operatorname{Gal}(K / \mathbb{Q})=$ all field automorphisms

To understand $\operatorname{Gal}(K / \mathbb{Q})$, consider its Galois representations, i.e., group homs $\rho: G a l(K / \mathbb{Q}) \rightarrow G L_{n}(\mathbb{C})$,
where $G L_{n}(\mathbb{C})$ is groun of $n \times n$ invertible matrices.
Motivation: $\operatorname{Gal}(K / \mathbb{Q})$ is quite abstract group, but ρ realizes its elements as specific matrices \Rightarrow can take determinant, eigenvalues, etc.

Galois representations

In general have Galois extension $K=\mathbb{Q}(\alpha) \supset \mathbb{Q}$ (Galois \Leftrightarrow all roots of minimal polynomial of α lie in K) Galois group $\operatorname{Gal}(K / \mathbb{Q})=$ all field automorphisms

To understand $\operatorname{Gal}(K / \mathbb{Q})$, consider its Galois representations, i.e., group homs

$$
\rho: \operatorname{Gal}(K / \mathbb{Q}) \rightarrow G L_{n}(\mathbb{C})
$$

where $G L_{n}(\mathbb{C})$ is group of $n \times n$ invertible matrices.
Motivation: $\operatorname{Gal}(K / \mathbb{Q})$ is quite abstract group, but ρ realizes its elements as specific matrices \Rightarrow can take determinant, eigenvalues, etc.

Artin L-function

General definition harder, so now only for cyclotomic $K=\mathbb{Q}\left(e^{2 \pi i / m}\right)$ and 1-dimensional representations $\rho: \operatorname{Gal}(K / \mathbb{Q}) \rightarrow \mathbb{C}^{*}=G L_{1}(\mathbb{C})$

Recall $\mathbb{Z}_{m}^{*} \simeq \operatorname{Gal}(K / \mathbb{Q}) \Rightarrow$
Associate to ρ Dirichlet character modulo m

$$
\chi(u)= \begin{cases}\rho\left(\varphi_{u}\right) & \text { if } \operatorname{gcd}(u, m)=1 \\ 0 & \text { if } \operatorname{gcd}(u, m)>1\end{cases}
$$

Artin L-function then equals Dirichlet L-function for character χ

$$
L(s, \rho)=L(s, \chi)
$$

This general correspondence of Artin "algebraic" and Dirichlet "analytic" L-functions was one of keystones on which Langlands built his program

Class field theory

$L(s, \rho)=L(s, \chi)$ holds for all 1-d representations $\rho: G a l(K / \mathbb{Q}) \rightarrow \mathbb{C}^{*}$ (for any number field K)
Follows from Class Field Theory
Emil Artin, Helmut Hasse, John Tate ~1900-1950 describe all K with commutative Galois group similarly as $\operatorname{Gal}\left(\mathbb{Q}\left(e^{2 \pi i / m}\right) / \mathbb{Q}\right) \simeq \mathbb{Z}_{m}^{*}$.

Special case: quadratic reciprocity

- relation between Legendre symbols $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$ for primes p, q. - i.e., solvability of congruences $x^{2} \equiv p(\bmod q)$ and $x^{2} \equiv q(\bmod p)$.

Even implies higher reciprocity laws for congruences of n-th degree
\Rightarrow main theorem is called Artin reciprocity law
\Rightarrow hypothetical, much more general Langlands reciprocity law

Class field theory

$L(s, \rho)=L(s, \chi)$ holds for all 1-d representations $\rho: G a l(K / \mathbb{Q}) \rightarrow \mathbb{C}^{*}$
(for any number field K)
Follows from Class Field Theory
Emil Artin, Helmut Hasse, John Tate ~1900-1950 describe all K with commutative Galois group similarly as

$$
\operatorname{Gal}\left(\mathbb{Q}\left(e^{2 \pi i / m}\right) / \mathbb{Q}\right) \simeq \mathbb{Z}_{m}^{*}
$$

Special case: quadratic reciprocity

- relation between Legendre symbols $\left(\frac{p}{q}\right)$ and $\left(\frac{q}{p}\right)$ for primes p, q,
- i.e., solvability of congruences $x^{2} \equiv p(\bmod q)$ and $x^{2} \equiv q(\bmod p)$.

Even implies higher reciprocity laws for congruences of n-th degree \Rightarrow main theorem is called Artin reciprocity law
\Rightarrow hypothetical, much more general Langlands reciprocity law

Recap

Studied Riemann zeta $\zeta(s)$,

Dirichlet $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(p)}{\rho^{s}}}$,
Artin $L(s, \rho)$
all L-functions of degree 1

Next:

- Flliptic curves: diophantine equations $y^{2}=x^{3}+a x+b$, give algebraic L-functions of degree 2
- Modular forms: corresponding analytic L-functions of degree 2
- Their corresnondence \Rightarrow FIT
- Langlands program: Artin representations correspond to automorphic representations

Recap

Studied Riemann zeta $\zeta(s)$,
Dirichlet $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(\rho)}{\rho^{s}}}$,
Artin $L(s, \rho)$
all L-functions of degree 1

Next:

- Elliptic curves: diophantine equations $y^{2}=x^{3}+a x+b$, give algebraic L-functions of degree 2
- Modular forms: corresponding analytic L-functions of degree 2
- Their correspondence \Rightarrow FLT
- Langlands program: Artin representations correspond to automorphic renresentations

Recap

Studied Riemann zeta $\zeta(s)$,
Dirichlet $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\frac{\chi(\rho)}{\rho^{s}}}$,
Artin $L(s, \rho)$
all L-functions of degree 1

Next:

- Elliptic curves: diophantine equations $y^{2}=x^{3}+a x+b$, give algebraic L-functions of degree 2
- Modular forms: corresponding analytic L-functions of degree 2
- Their correspondence \Rightarrow FLT
- Langlands program: Artin representations correspond to automorphic representations

Thanks

Thanks for your attention!

