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Why to Obfuscate Programs?

Do not let anyone to copy our program/algorithm
Hide a password written in the program
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Why to Obfuscate Programs?

Compiled program:
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Why to Obfuscate Programs?

In the hexa code of the compiled program:
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Why to Obfuscate Programs?

This can be fix by usage of a hash of the password

But there is still some work with obfuscation of this program:
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IOCCC

The International Obfuscated C Code Contest
Goal is to write the most Obscure/Obfuscated C program within
the rules.
Some exmaples:
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IOCCC

Fly simulator
Less then 2 kilobytes of code
Complete with relatively accurate 6-degree-of-freedom dynamics,
loadable wireframe scenery, and a small instrument panel.
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IOCCC
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IOCCC

Coder form ASCII to Morse alphabet and vice versa
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Section 2

Obfuscation under VBB Security
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Boolean Circuit

Model of boolean function f : {0,1}n → {0,1}m

Composed of AND, OR and NOT gates
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Virtual Black Box

Program/object which is viewed only in terms of its inputs and
outputs
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Obfuscation under VBB Security

Definition (Obfuscator of circuits under Virtual Black Box security)

O is an obfuscator of circuits if
1 Correctness: ∀c circuit , O(c) ≡ c.
2 Efficiency: ∀c circuit, |O(c)| ≤ poly(|c|).
3 VBB: ∀A,A is bounded, ∃S PPT simulator s.t. ∀c circuit:∣∣∣Pr [A(O(c)) = 1]− Pr

[
Sc
(

1|c|
)
= 1

]∣∣∣ ≤ µ (|c|) ,
where µ is a negligible function.

Having access to the obfuscaded program is the same as having
access to the program only as black box.

14/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Obfuscation under VBB Security

Definition (Obfuscator of circuits under Virtual Black Box security)

O is an obfuscator of circuits if
1 Correctness: ∀c circuit , O(c) ≡ c.
2 Efficiency: ∀c circuit, |O(c)| ≤ poly(|c|).
3 VBB: ∀A,A is bounded, ∃S PPT simulator s.t. ∀c circuit:∣∣∣Pr [A(O(c)) = 1]− Pr

[
Sc
(

1|c|
)
= 1

]∣∣∣ ≤ µ (|c|) ,
where µ is a negligible function.

Having access to the obfuscaded program is the same as having
access to the program only as black box.

14/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Impossibility of Obfuscation under VBB Security

Theorem (Impossibility of obfuscation under VBB securit)

Obfuscators of circuits under VBB security do not exists.

Source: On the (Im)possibility of Obfuscating Programs, B. Barack
and collective, 2001
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Section 3

Weaker Definitions
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Indistinguishability Obfuscation

Definition (Indistinguishability Obfuscator for circuits)

We call iO an indistinguishability obfuscator for a circuit class {Cλ} if
1 Correctness: ∀λ ∈ N security parametr, ∀C ∈ Cλ, ∀x input, we

have that

Pr [C′(x) = C(x) : C′ ← iO(λ,C)] = 1.
2 Polynomial slowdown: ∃p polynom s.t. ∀C ∈ Cλ, we have
|C′| ≤ p(|C|), where C′ = iO(λ,C).

3 Computaitonal indistinguishability: Suppose that
∀x : C0(x) = C1(x) then for any PPT adversaries Samp,D, ∃µ a
negligible function s.t.:

|Pr
[
D(σ, iO(λ,C0)) = 1 : (C0,C1, σ)← Samp(1λ)

]
−

− Pr
[
D(σ, iO(λ,C1)) = 1 : (C0,C1, σ)← Samp(1λ)

] | ≤ µ(λ).
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Indistinguishability Obfuscation

Given two programs computing the same output for all inputs
It is impossible distinguish between obfuscations of these
programs
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Differing-inputs Obfuscation

Definition (Differing-inputs Obfuscator for circuits)

We call diO a Different-inputs obfuscator for a different-inputs circuit
class C = {Cλ} if

1 Correctness: ∀λ ∈ N security parametr, ∀C ∈ C, ∀x input, we
have that

Pr [C′(x) = C(x) : C′ ← diO(λ,C)] = 1.

2 Polynomial slowdown: ∃p polynom s.t. ∀C ∈ C circuit, we have
|C′| ≤ p(|C|), where C′ = diO(λ,C).

3 Different-inputs: For any PPT distinguisher D, for
(C0,C1, σ)← Samp(1λ), ∃µ a negligible function s.t.: ∀λ ∈ N
security parametr and ∀x holds:
Pr
[
C0(x) = C1(x) : (C0,C1, σ)← Samp(1λ)

]
> 1− µ(λ). Then

we have:

|Pr [D(diO(λ,C0), σ) = 1]− Pr [D(diO(λ,C1), σ) = 1]| ≤ µ(λ).
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Differing-inputs Obfuscation

Given two programs computing the same output for nearly each
input
It is hard to find the input where the programs differ
Then it is also hard to distinguish between obfuscations of these
programs
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Differing-inputs Obfuscation

Theorem (Relation between iO and diO)

Every diO obfuscator is also a iO obfuscator.

Proof.
Definitions of iO and diO differs in assumption, which pairs of
circuits C0,C1 are considered:

iO: C0(x) = C1(x),
diO: Pr [C0(x) = C1(x)] > 1− µ(λ) for λ security parametr, µ a
negligible function.

If C0(x) = C1(x) then the condition for diO is fulfilled.
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Best-possible Obfuscation

Definition (Best-possible Obfuscator for circuits)

We call bO a Best-possible obfuscator for a circuit class C if
1 Correctness: ∀λ ∈ N security parametr, ∀C ∈ C, ∀x input, we

have that

Pr [C′(x) = C(x) : C′ ← bO(λ,C)] = 1.

2 Polynomial slowdown: ∃p polynom s.t. ∀C ∈ C circuit, we have
|C′| ≤ p(|C|), where C′ = bO(λ,C).

3 Best-possible: For any PPT learner L, ∃S simulator s.t.: for
(C0,C1, σ)← Samp(1λ), |C0| ≡ |C1|, for every input x is
C0(x) = C1(x). Then:

L(bO(C0))
c≡ S(C1),

where A
c≡ B means that two distributions A and B are

computationally indistinguishable.
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Best-possible Obfuscation

Given program C0

Let C1 be any program of similar size computing the same
function as C0

Everything what can be extracted from obfuscated bO(C0) can
be also extracted from C1
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Best-possible Obfuscation

Theorem (Relation between iO and bO)

The obfuscator O is a bO obfuscator if and only if it is an iO
obfuscator.

Proof.
bO ⇒ iO

C0, C1 two programs of similar size computing the same
functionality
Consider an empty learner L who outputs whatewer obfuscation is
given
S is a PPT simulator
Because O je Best-possible obfuscator, then L(O(C0))

c≡ S(C1),
so also O(C0)

c≡ S(C1)

Also L(O(C1))
c≡ S(C1) and O(C1)

c≡ S(C1)
Computational indistinguishability is an equivalence and we have
O(C0)

c≡ O(C1)
Thanks to it there is not any PPT adversary D who can distinguish
between obfuscations of C0 and C1
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Best-possible Obfuscation

Proof - next part.

iO ⇒ bO

C0, C1 two programs of similar size computing the same
functionality
iO is indistinguishability obfuscator
For every PPT learner L let S be PPT simulator that gets C1, runs
iO(C1) and activates L on iO(C1)
From an indistinguishability assumption holds
L(iO(C0))

c≡ L(iO(C1)) = S(C1)
Thanks to it is iO a Best-possible obfuscator
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Virtual Grey Box Obfuscation

Definition (Virtual Grey Box Ofuscator for circuits)

We call Ovgb a Virtual Gray Box Obfuscator for a circuit class C if
1 Corretness: ∀λ ∈ N security parametr, ∀C ∈ C, ∀x input, we have

that
Pr
[
C′(x) = C(x) : C′ ← Ovgb(λ,C)

]
= 1.

2 Polynomial slowdown: ∃p polynom s.t. ∀C ∈ C circuit, we have
|C′| ≤ p(|C|), where C′ = Ovgb(λ,C).

3 Virtual Grey Box: For every PPT adversary A, every predicate
π : C → {0,1}, λ = |C| security parameter, there ∃S an
unbounded simulator, q(·) polynom and a negligible function µ
s.t.:∣∣∣Pr

[
A(Ovgb(C)) = π(C)

]
− Pr

[
SC[q(λ)](1λ) = π(C)

]∣∣∣ ≤ µ(λ),
where C[q(λ)] is an oracle that allows at most q(n) queries.
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Virtual Grey Box Obfuscation

Relaxes the definition of VBB Obfuscator
Simulator S is unbounded
We still have a bounded number of oracle queries to C.
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Virtual Grey Box Obfuscation

Theorem (Relation between diO and Ovgb)

A program O is a diO if and only if it’s a Ovgb obfuscator.

Source: On Virtual Grey Box Obfuscation for General Circuits,
N. Bitansky, R.Canetti, Y. T. Kalai and O. Paneth, 2014
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Section 4

Usage of Obfuscation

29/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Functionality

Definition (Functionality)

A functionality F defined over (K ,X ) is a function
F : K × X → {0,1}∗. The set K is called the key space, the set X is
called the plaintext space. The space key K contains a special key
called the empty key denoted ε.

K is a set of functions on X
Functionality F describes the functions of a plaintext that can be
learned from ciphertext
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Functional Encryption

Definition (Functional encryption scheme)

A functional encryption scheme FE for a functionality F defined over
(K ,X ) is a tuple of four PPT algorithms (Setup, Key, Encrypt,
Decrypt) satysfying:

1 Correctness: ∀k ∈ K ,∀x ∈ X :
generate a public and master key pair: (pk ,mk)← Setup(1λ),
generate secret key for k: skk ← Key(mk , k),
encrypt message x: c ← Encrypt(pk , x),
compute functionality from c: y ← Decrypt(skk , c),

Then we require: Pr [y = F (k , x)] = 1.

A functional encryption enables to evaluate F (k , x) given the
encryption of x and secret key skk for k .
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Identity Based Encryption

Allows every party to generate a public key from known identity
value string
Trusted authority choose it’s master private and master public key
Trusted third party generates private keys for individual users
public keys
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Identity Based Encryption

We can imagine IBE as evaluation of function on message
y = E(Id , x)
Function returns x only if identity Id is allowed to decrypt,
otherwise halts
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Security Definition of Functional Eencryption

We say that Functional encryption scheme is indistinguishability
secure, if the following experiment holds true:

We generate (pk ,mk)
Attacker A declares two inputs x1, x2

Attacker is given a secret key skk for k such that
F (k , x1) = F (k , x2) for all required k
A is given cyphertext cb = Encrypt(pk ,mb), b ∈ {0, 1}
A is outputs b′ ∈ {0, 1}
There is µ a negligible fuction s.t. Pr [b = b′] ≤ 1

2 + µ(λ)
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Functional Encryption from Indistinguishability
Obfuscation

Let’s construct scheme for functional encryption

iO is an indistinguishability obfuscator
(SetupP , EncryptP , EvalP , DecryptP) is a public-key encryption
scheme
Encryption of a value x will be an encryption of x using the public
key pkP from the public-key encryption scheme
C is a circuit which is obfuscation of a program that uses skP to
decrypt x
A secret key for functional encryption is skk which outputs C(x)
This works for a Black-Box obfuscator
An Indistinguishability obfuscator can leak skP
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Functional Encryption from Indistinguishability
Obfuscation

We fix the problem with generating two public keys pk1
P , pk2

P

We require that the encryption of x consists of encryptions of x
under both keys, let’s name them e1,e2

Receiver is not able to check that both cyphertexts encrypt the
same message
Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message
Our NIZK system consists of three algorithms (SetupNIZK,
ProveNIZK, VerifyNIZK)
Obfuscated circuit C first checks the NIZK proof, then uses
secret key sk1

P to decrypt e1 to x

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Functional Encryption from Indistinguishability
Obfuscation

We fix the problem with generating two public keys pk1
P , pk2

P

We require that the encryption of x consists of encryptions of x
under both keys, let’s name them e1,e2

Receiver is not able to check that both cyphertexts encrypt the
same message
Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message
Our NIZK system consists of three algorithms (SetupNIZK,
ProveNIZK, VerifyNIZK)
Obfuscated circuit C first checks the NIZK proof, then uses
secret key sk1

P to decrypt e1 to x

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Functional Encryption from Indistinguishability
Obfuscation

We fix the problem with generating two public keys pk1
P , pk2

P

We require that the encryption of x consists of encryptions of x
under both keys, let’s name them e1,e2

Receiver is not able to check that both cyphertexts encrypt the
same message

Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message
Our NIZK system consists of three algorithms (SetupNIZK,
ProveNIZK, VerifyNIZK)
Obfuscated circuit C first checks the NIZK proof, then uses
secret key sk1

P to decrypt e1 to x

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Functional Encryption from Indistinguishability
Obfuscation

We fix the problem with generating two public keys pk1
P , pk2

P

We require that the encryption of x consists of encryptions of x
under both keys, let’s name them e1,e2

Receiver is not able to check that both cyphertexts encrypt the
same message
Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message

Our NIZK system consists of three algorithms (SetupNIZK,
ProveNIZK, VerifyNIZK)
Obfuscated circuit C first checks the NIZK proof, then uses
secret key sk1

P to decrypt e1 to x

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Functional Encryption from Indistinguishability
Obfuscation

We fix the problem with generating two public keys pk1
P , pk2

P

We require that the encryption of x consists of encryptions of x
under both keys, let’s name them e1,e2

Receiver is not able to check that both cyphertexts encrypt the
same message
Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message
Our NIZK system consists of three algorithms (SetupNIZK,
ProveNIZK, VerifyNIZK)

Obfuscated circuit C first checks the NIZK proof, then uses
secret key sk1

P to decrypt e1 to x

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Functional Encryption from Indistinguishability
Obfuscation

We fix the problem with generating two public keys pk1
P , pk2

P

We require that the encryption of x consists of encryptions of x
under both keys, let’s name them e1,e2

Receiver is not able to check that both cyphertexts encrypt the
same message
Encryptor generates non-interactive zero-knowledge proof that
both cyphertexts encrypt the same message
Our NIZK system consists of three algorithms (SetupNIZK,
ProveNIZK, VerifyNIZK)
Obfuscated circuit C first checks the NIZK proof, then uses
secret key sk1

P to decrypt e1 to x

36/40 Martin Mach Cryptography is not just Encryption - Obfuscation



Functional Encryption from Indistinguishability
Obfuscation

Now we construct another program, which checks the NIZK proof
then uses secret key sk2

P to decrypt e2 to x

Circuit C′ is an obfuscation of this program

Using an indistinguishability obfuscator, we have C
c≡ C′

C′ computes the same as C but can’t leak sk1
P
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Functional Encryption from Indistinguishability
Obfuscation

Schema (Functional Encryption from iO)

Input : k ∈ K , x ∈ X
Setup(1λ) algorithm:

Generate (pk1
P , sk1

P)← SetupP(1
λ)

Generate (pk2
P , sk2

P)← SetupP(1
λ)

Set mk = sk1
P

Set CRS← SetupNIZK are data needed for the NIZK proof
Set PP =

{
pk1

P , pk2
P ,CRS

}
as a public parametrs

Encrypt(PP, x) algorithm:
Output c = (e1, e2, π), where e1 = Encrypt(pk1

P , x ,CRS),
e2 = Encrypt(pk2

P , x ,CRS)
π is a NIZK proof that both e1, e2 encrypt the same message
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Functional Encryption from Indistinguishability
Obfuscation

Schema (Functional Encryption from iO - Second part)

Key(mk , k) algorithm:
Output a secret key skk . It is a program which we get as an
obfuscation of program P1 which decrypts e1 using sk1

P
Secret key skk = iO(P1(e1, e2, π)), where P1 outputs
F (k ,DecryptP(sk1

P , e1)) using k , sk1
P ,CRS

Decrypt(skk , c = (e1,e2, π)) algorithm:
Outputs the output of obfuscated program skk on input
c = (e1, e2, π)
Output is F (k ,DecryptP(sk1

P , e1))
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Thank you for your attention!
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