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Semigroups and monoids

Definition
A semigroup is a set with an associative binary operation.

Definition
A monoid is a semigroup with a neutral element.

Definition
Let S and T be semigroups. We say that T is a quotient of S if
there exists a surjective morphism ϕ : S → T . The semigroup T
divides the semigroup S if T is a quotient of a subsemigroup of S.

Definition
A congruence on a semigroup S is an equivalence relation ∼ on S
satisfying for each a, b, c ∈ S: a ∼ b⇒ (a · c ∼ b · c ∧ c · a ∼ c · b).
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Words

Let A be (finite) a set. We will call it an alphabet. Elements of
this set are called letters or symbols.

Definition
A word over the alphabet A is a finite sequence a1a2 · · · an of letters
from A.

Definition
Denote by A∗ the set of all words over A (the empty sequence is
also a word). Then A∗ with the associative operation of
concatenation forms a free monoid on the set A. The neutral
element is the empty word λ.

Definition
The set A+ = A∗ \ {λ} with the same operation of concatenation is
a free semigroup on the set A.
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Subwords, factors, etc.

Definition
Let w ∈ A∗ be a word and let a ∈ A be a letter. The number of
occurences of a in w is denoted |w|a.

Definition
A word u is a prefix (or left factor) of a word w if there exists a
word v such that w = uv. We define a suffix of w in a similar way.

Definition
A word u is a factor of a word w if there exist words v1, v2 such
that w = v1uv2.

Definition
A word u = a1 . . . an, ai ∈ A is a subword of a word w if there exist
words v0, v1, . . . , vn such that w = v0a1v1 . . . anvn.
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Examples

Example
Take a word u = abacbacb.

Then aba is a prefix of u, acb is a suffix
of u, bacb is a factor of u and bcbb is a subword of u.

abacbacb
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Languages

Definition
Let A be a finite alphabet. A language over the alphabet A is a
subset of A∗.

Example

L =
{
ak | k ≥ 1

}
⊂ {a, b}∗ is a language.
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Automata

q0

q1 q2

a
b

a

b

b

a

Definition
An automaton is a triplet A = (Q,A, ·), where Q is a (finite) set of
states, A is a finite alphabet and · is a function from Q×A to Q.
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Automata II

Definition
We say that a language L is recognized by an automaton
A = (Q,A, ·) if there exists a state q0 ∈ Q and a set of states F
such that u ∈ L iff q0 · u ∈ F .

q0 q1

q2

a

b

a

b

a, b
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Regular languages

Definition
Let A be a finite alphabet. The set of regular languages (also
rational languages) over A is the smallest set of languages of A∗

such that
1 the empty language ∅ is regular,
2 for every word u ∈ A∗, the language {u} is regular,
3 if L1 and L2 are regular languages, then L1 ∪ L2, L1 · L2 and
L∗
1 are also regular.

Example

L =
{
ak | k ≥ 1

}
= {a} · {a}∗ is a regular language.
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Transition monoid

Definition
Let A = (Q,A, ·) be an automaton. We can extend the operation ·
to a function from Q×A∗ to Q by the following rules: q · λ = q and
q · (wa) = (q · w) · a where q ∈ Q,w ∈ A∗ and a ∈ A. Each word
from A∗ thus defines a function from Q to Q. The monoid
generated by all these functions (w varying over A∗) is called the
transition monoid of the automaton A . It is denoted M(A ).
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Examples

q0 q1 q2
a

b

a

b

a, b

Example
q0 · a = q1 q1 · a = q1 q2 · a = q2

q0 · b = q2 q1 · b = q2 q2 · b = q2

So we have: fa(q0) = q1, fa(q1) = q1, fa(q2) = q2 and
fb(q0) = q2, fb(q1) = q2, fb(q2) = q2. Moreover
fa ◦ fa = fa, fa ◦ fb = fb ◦ fa = fb ◦ fb = fb. Therefore
M(A ) = {id, fa, fb}.
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Recognizable languages

Definition
A language L is called recognizable if it is recognized by a finite
monoid, i.e. there exists a finite monoid M and a morphism
α : A∗ →M such that L = α−1(P ) for some P ⊆M .

Proposition
If L ⊆ A∗ is recognized by an automaton, it is recognized by the
transition monoid of this automaton. Moreover, L is recognized by
a finite automaton if and only if L is recognizable.

Theorem
A language L ⊆ A∗ is regular iff it is recognizable.
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Examples

Remark
Regular ⇔ recognizable ⇔ recognized by a finite automaton.

Example

The language {aibi | i ≥ 0} is not regular.

Proof.
Suppose there exists a finite automaton which recognizes the
language. This automaton has n states. Take a word anbn. Then,
when reading a’s, there must be some loop. We can repeat this
path once again, i.e. the automaton would accept the word an+`bn

for some ` ≥ 1. However, this word does not belong to the
language.

Jiří Sýkora AUTOMATA, LANGUAGES AND MONOIDS I



Examples

Remark
Regular ⇔ recognizable ⇔ recognized by a finite automaton.

Example

The language {aibi | i ≥ 0} is not regular.

Proof.
Suppose there exists a finite automaton which recognizes the
language. This automaton has n states. Take a word anbn. Then,
when reading a’s, there must be some loop. We can repeat this
path once again, i.e. the automaton would accept the word an+`bn

for some ` ≥ 1. However, this word does not belong to the
language.

Jiří Sýkora AUTOMATA, LANGUAGES AND MONOIDS I



Examples

Remark
Regular ⇔ recognizable ⇔ recognized by a finite automaton.

Example

The language {aibi | i ≥ 0} is not regular.

Proof.
Suppose there exists a finite automaton which recognizes the
language. This automaton has n states. Take a word anbn. Then,
when reading a’s, there must be some loop. We can repeat this
path once again, i.e. the automaton would accept the word an+`bn

for some ` ≥ 1. However, this word does not belong to the
language.

Jiří Sýkora AUTOMATA, LANGUAGES AND MONOIDS I



Properties of regular languages

Proposition
Let L1 and L2 be regular languages. Then also

1 L1 ∪ L2,

2 L1 ∩ L2,
3 L1 \ L2,
4 L1

are regular languages.
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Syntactic monoid

Definition
Let L ⊆ A∗ be a language. We define the syntactic congruence of L
(denoted ∼L) on A∗ by u ∼L v iff xuy ∈ L⇔ xvy ∈ L for every
x, y ∈ A∗. The syntactic monoid of L is then defined as
M(L) = A∗/∼L.

Example

Let L =
{
ak | k ≥ 1

}
. Then there are three equivalence classes of

∼L, namely [a]∼L = {u ∈ A∗ | u 6= λ, |u|b = 0},
[b]∼L = {u ∈ A∗ | |u|b ≥ 1} and [λ]∼L = {λ}. The operation is
described by the following table:

· [λ]∼L [a]∼L [b]∼L

[λ]∼L [λ]∼L [a]∼L [b]∼L

[a]∼L [a]∼L [b]∼L [b]∼L

[b]∼L [b]∼L [b]∼L [b]∼L
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Syntactic monoid II

Proposition
A monoid M recognizes a language L iff M(L) divides M .

Proposition
Let L be a regular language. Then there exists a uniquely
determined (up to renaming of states) finite automaton recognizing
L that has a minimum number of states among the automata
recognizing L. It is called the minimal automaton of L.

q0 q1 q2
a

b

a

b

a, b
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Syntactic monoid III

Proposition
Let L be a regular language. The transition monoid of the minimal
automaton of L is equal (isomorphic) to the syntactic monoid of L.

Example

Take L =
{
ak | k ≥ 1

}
and its minimal automaton A . We know

that M(A ) = {id, fa, fb} and M(L) = {[λ]∼L , [a]∼L , [b]∼L}. It is
obvious that ϕ defined by
ϕ(id) = [λ]∼L , ϕ(fa) = [a]∼L , ϕ(fb) = [b]∼L is a monoid
isomorphism.
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Varieties

Definition
A variety of finite semigroups (or monoids) is a class of finite
semigroups (or monoids) closed under division and finite products.

Definition
We say that a semigroup S satisfies the equation u = v, u, v ∈ A+

if ϕ(u) = ϕ(v) for every morphism ϕ : A+ → S.
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Varieties II

Definition
We say that a variety V is defined (ultimately defined) by
equations un = vn, n > 0 if S lies in V iff S satisfies the equations
un = vn for every n > 0 (for every n large enough).

Example
The variety of finite commutative semigroups is defined by the
equation xy = yx.
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We say that a variety V is defined (ultimately defined) by
equations un = vn, n > 0 if S lies in V iff S satisfies the equations
un = vn for every n > 0 (for every n large enough).
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J -triviality

Definition
Let M be a monoid. We define on M an equivalence relation J in
the following way: aJ b⇔MaM =MbM .

Remark
aJ b iff there exist u, v, x, y ∈M such that uav = b and xby = a.

Definition
We say that M is J -trivial if aJ b⇒ a = b.

Theorem
The variety J of finite J -trivial monoids is ultimately defined by
the equations (xy)nx = (xy)n = y(xy)n.

Jiří Sýkora AUTOMATA, LANGUAGES AND MONOIDS I



J -triviality

Definition
Let M be a monoid. We define on M an equivalence relation J in
the following way: aJ b⇔MaM =MbM .

Remark
aJ b iff there exist u, v, x, y ∈M such that uav = b and xby = a.

Definition
We say that M is J -trivial if aJ b⇒ a = b.

Theorem
The variety J of finite J -trivial monoids is ultimately defined by
the equations (xy)nx = (xy)n = y(xy)n.

Jiří Sýkora AUTOMATA, LANGUAGES AND MONOIDS I



J -triviality

Definition
Let M be a monoid. We define on M an equivalence relation J in
the following way: aJ b⇔MaM =MbM .

Remark
aJ b iff there exist u, v, x, y ∈M such that uav = b and xby = a.

Definition
We say that M is J -trivial if aJ b⇒ a = b.

Theorem
The variety J of finite J -trivial monoids is ultimately defined by
the equations (xy)nx = (xy)n = y(xy)n.

Jiří Sýkora AUTOMATA, LANGUAGES AND MONOIDS I



J -triviality

Definition
Let M be a monoid. We define on M an equivalence relation J in
the following way: aJ b⇔MaM =MbM .

Remark
aJ b iff there exist u, v, x, y ∈M such that uav = b and xby = a.

Definition
We say that M is J -trivial if aJ b⇒ a = b.

Theorem
The variety J of finite J -trivial monoids is ultimately defined by
the equations (xy)nx = (xy)n = y(xy)n.

Jiří Sýkora AUTOMATA, LANGUAGES AND MONOIDS I



Thank you for your attention!
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