English version
 

Seminář se koná ve čtvrtek v 9:00 v Praktiku KPMS, Sokolovská 83, Praha 8.

Program bude průběžně doplňován. Hosté jsou srdečně zváni.

  • Reflections on risk and dynamics in stochastic programming models. + upřesnění dalšího programu

    Autor:
    Prof. RNDr. Jitka Dupačová, DrSc.
    Datum:
    28.2.2008
  • Risk-Sensitive Control of Markov Chains and its Application to Portfolio Management.

    Autor:
    Ing. Karel Sladký (ÚTIA)
    Datum:
    13.3.2008
  • Aktuální problémy stochastického programování.

    Autor:
    Mgr. Martin Branda
    Datum:
    20.3.2008
  • Rychlost konvergence - zobecnění.

    Autor:
    RNDr. Vlasta Kaňková
    Datum:
    27.3.2008
  • Stochastická aproximace ve stochastickém programování.

    Autor:
    Prof. RNDr. Václav Dupač, DrSc.
    Datum:
    10.4.2008
  • Disertace.

    Autor:
    RNDr. Jana Čerbáková
    Datum:
    24.4.2008
  • Stochastické programování s náhodným vektorem pravých stran - minimaxový přístup.

    Autor:
    Pavel Kříž
    Datum:
    15.5.2008
  • Adaptive jackknife estimators for stochastic programming.

    Autor:
    Prof. David Morton (USA)
    Datum:
    22.5.2008
    Abstrakt:

    Stochastic programming facilitates decision making under uncertainty. Unfortunately, it is usually impractical to find an optimal solution to a stochastic program. Confidence intervals on the optimal value, or optimal gap of a candidate solution, can be obtained using Monte Carlo approximations. However, the standard point estimate of the optimal value, or optimality gap, contains bias due to the nature of the sampling-based approximation. We provide a method to reduce this bias, and hence provide a better, i.e., tighter, confidence interval on the optimal value or a candidate solution's optimality gap. Our method requires less restrictive assumptions on the structure of the bias than previously-available estimators, and we establish desirable statistical properties of our estimators. Our estimators adapt to problem-specific properties, and we provide a family of estimators, which allows flexibility in choosing the level of aggressiveness for bias reduction. We compare our estimators with known techniques on test problems from the literature.

 

Copyright © Jana Čerbáková, 2007