5th Day. May 25, 2011 ( 3+2=5 hours)
[Some Statistical Data Analysis]

: (i) Decomposition of Interest Rate Time series data.(Smoothing).
And JPyen/USdollar currency rates.

: (ii) Hedge Fund Returns.. VaR for HF returns
: (iii) Replication of Hedge Funds

: (iv) Trials for Data Analysis based on Brownian Nonparametric
Statistics.

An additional topic.
: (v).Spacing estimation of a density function.
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End-of-class

No homework today.

But, we take Photoes of us at the end of
afternoon class.



Section 1. Swap Interest rates in Japan
1987--1993

: Decomposition of time series data.
: Locally weighted regression

: Use this twice.

: 1 year span.

: 1 month span.



2. Data

Data we are analyzing are 3 month, 6 month and ! year Euro Yen interest rate
series, and 3 year, 5 year, 7 year, and 10 year LIBOR swap rate series. All series
are daily for the period; from the lst of December, 1986 to the 16th of Sep-
ember, 1992, This data is now regarded as historic in a sense that the period of
over heated Japanese economy, or the ‘bubble’ economy, is included. The length
of each series is 2115, so that this study required a powerful computing envi-
ronment since computer intensive smoothing techniques like sabl or lowess are

used,



3. Decomposition
3.1. SABL DECOMPOSITION

As a preliminary analysis, we tried the sabl (Seasonal Adjustment at Bell Lab-
oratories) decomposition procedure which is proposed by Cleveland and Devlin
(1988) and implemented as a function sabl. in S (Becker ef ai., 1988). This sabl
procedure is widely used as well as X-11 for time series analysis of real data.
For example, Shiba and Takeji (1994), aiming at better prediction of asset price,
applied this procedure to various price indices: TOPIX (Tokyo Stock Exchange
Price Index), two specific stock prices, Yen/Dollar exchange rate, and long term
bond price index. By sabl, the given time series is decomposed into three parts,

original series = trend + seasonal + irregular.
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Figure 1. sabl decomposition of the 3 month Buro Yen interest vate series. The seasonal
component on the third panel was obtained by smoolhing over the same days of 3 neighboring

years.
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Figure 2, sabl decomppsifiun of the 3 month Euro Yen interest rate series. The seasonal
component on the third panet was obtained by smoothing over the same days of 7 neighboring
years. :



Our decomposition

Two step smoothing by Locally
weighted regression
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This Looks better than sabl for
the data of our concern.

Let us look into the details of this.
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Figure 4. Long term trends and the official discount rate series.
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Zi(t} = L;(t) + Si(t) + L;(t),

4.3, TIRREGULAR

The seven irregular series obtained were combined into a multivariate time series
1) = (I1(8), ..., I7(2))T and a multivariate autoregressive model MAR(2),

I(t) = AI(t — 1) + BI(t — 2) + &(t),

is fitted to them. The order of the autoregression is selected so as to minimize

AIC. Autocorrelations of the residuals €;(¢),%7 = 1,...,7 are shown in Figure 9.
There is no doubt on the orthogonality of each residuals as a time series, since all
autocorrelations are between —0.06 and 0.05. This shows goodness of fit of the

MAR(2) model.
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It is interesting to note that the coefficient matrix A in Table III shows that the 6
month rate significantly affects the 3 month rate and also affects other rates except
the 10 years. This behavior is understandable since trading volume of 6 month
inlerest rate is the biggest in the market. We could not find any good reason why
all elements of the 6th column of the coefficient matrix B in Table IV are positive
and significantly high except the first. In particular, the 2nd and the 3rd elements
are significant compared with other elements of the matrix. This implies that the
two days before rate of the 7 years affects the 6 month or the 1 year rate positively, It
15 said that bond future and the 7 year swap are very much related since bonds with
7 years maturity are usually the cheapest among the nominates of the cheapest-
to-deliver (bonds with 7 to 10 years maturity) for the bond future trading in the
market. Note that the portfolio of long term swaps are usually hedged with bond
futures. It is also said that the issuing banks of 5 years maturity bonds are limited
to the three banks, the Nippon Credit Bank, the Industrial Bank of Japan, and the
Long Term Credit Bank of Japan so that the 5 year swap rate is affected and tends



Table HI. Coefficient matrix A

3 months 6 months | year 3 years 5ycars 7 years 10 years

(0.693 0.381 0.019 —0.025 0.150 —-0.062 -0.0936

0.14] 0.769 0.016¢ 0115 0.031 —-0.128 0.0026

0.053 (}.245 0.603 0071 0086 -0.163 {.0515-

L.O21 0.201 —-0.036 0.8384 0.08¢ —0.137 0.0689

(L0325 0.160 —0.037 0.134 0790 0080 0.0946

0.000 (0.133 —0.010, 0.066 0.038 0.74t  0.1001

0.036 (0.086 —=0.000 0.147 0.000 -0.086 0.8681
Table IV, Coclficient matrix [
3 months 6 months 1 year 3years Syears 7 years 10 years
—0.045 —0.0980 -0.04783 —-0.0014 —-0.12574 0.08 0.0454
—=0.076 —0.0035 -0.01673 —0.1413 —-0,04465 0.21 —0.0043
—0.074  —=0.1159  0.12864 -—-0.0638 -—-0.09166 0.24 —0.0775
—0.091 —0.0472 0.01298 —0.0684 -—-0.06411 0.16 —0.1213
—-0.073 —=0.0554 0.03210 -0.0819 000041 0.12 —~{.1536
—0.045 —0.0595 0.00501 -—-0.0520 -0.00717 0.12 --(.1645
—0.058 ° —-0.0449  0.00049 -0.1i181 002371 0.12 -0.1237




Table V. Residual standard error

3 months 6 months | year 3 years 5 years 7yecars 10 years

(L035 0.04 0.04 0.03] 0031 0.029 0.028

Table VI, Residual correlation matriy,

3 months 6 months | year 3 years 5years 7years 10 years

3 months 1.00 0.47 0.37 023 0.22 0.20 0.18
6 months 0.47 1.00 0.73 042 0.41 0.37 0.33
1 year 0.37 0.73 1,00  0.46 0.45 0.41 0.36
3years 0.23 0.42 046 1.00 0.86 0.70 0.74
5ycars 0,22 0.41 045 086 100 083 079
7ycars  0.20 0.37 04!  0.79 0.83 1.00 0.86

[0 years (.18 0.33 036 074 079 0386 1.00




Table VII. Eigch values of residual covariance matrix

Al Az Az A As A6 A7

0.0044654 00016757 0.0008558 0.0004066 0.0002422 0.00013127 (.00010659

Tabie VIII. The first four cigen vectors of the covariance matrix of
resicuals

wp 43 75 14

3 months 0.2599885 —0.4014906 0,85685183  0.192176906
6 months 0.4779732 —0.4535444 —0.19496352 ~0.726141302
 year  0.4773444 —0.3520577 ~0.45793555 0.658369742
Jycars 03734923  0.3407595  0.05364768  0.008425985
S5yecars  0.3765874  0.3663068  0.05499962 —0.003553742
7years  0.3264048  0.3614640  0.07069049 —0.018223919
10 years 0.2970443  0.35754892  0.08478813 —0.043822272
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5. Prediction

Using the fitted MAR(2) model in Section 4.3, we can predict interest rates on a
datly basis, For example, a practical one day ahead prediction of seven series is
arven at once by

Z(t 4 1) = L{t) + S(t) + AI(t) + BI(t - 1).

Table XI1. Variability of cach component of the decomposition

3 months 6 months 1 year 3ycars DSyears 7years 10 years

long lerm trend  0.00716  0.00756  0.00827 0.00797 0.0078 0.00688 0.00709
short term trend 0.00318  0.00512  0.0049% 0.00797 0.0078 0.00688 0.00709
irregular 0.07485 0.07611 0.07827 0.06976 0.0680 0.06345 0.05705




This is due to the fact that the variability of the irregular component dominates
those of the long term trend and the short term trend as is seer in Table XI (see also
Figure 5, 7 and 10). Here, the variabilities for the long and the short term are the
standard deviations of the lag | differences when those were regarded as random
fluctuations, and the variabilities for the irregular is exactly the standard deviations
of the stationary process I(£). Since the Z(t + 1) can be represented as

%’l’(t-l—l):L(t-l— D+ SE+ 1)+ AI(fY+ BIE— 1) +e(t + 1),
the ﬁrediction error becomes
Z{t + 1)-; Z+DN={LE+ 1) =L} +{SE+1)-St)} +elt+1).

The first two terms on the right hand side of the above equation are negligible
compared with the last term £(¢ + 1). The standard error of £(t + 1) is around 0.03
to 0.04 as is seen in Table V, so that the prediction error is reduced to almost half
by predicting with Z(t + 1) based on the MAR(2) model, if it is compared with
that by a simple prediction based only on the long term and short term trends,

Z(t+ 1) = L(£) + S(2).






Section 2. Hedge fund Returns

: A trial concerned with AR nature of
Hedge fund returns.
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Outline

AR(+) months frequency is used in Part 1..
Then, monthly series of AR(+) months’ AR(+) values are used in Part 2.

o 3 3 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok ok 3k ok ok ok %k %k %k k k

1. Return data

: mean & Variances (moments) and AR(+) frequency.

2. (still going on)
2-1. (Variances. Adjusted R-squares)
Return regressions and Variability.
2-2. .(Means. Averages)

Return Regressions and Cross-sectional regressions for
Intercepts and Averages.



Return data

: mean & Variances (moments) and AR(+)
frequency.



a) Return of a hedge fund
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Fig .3 Typical structure of a hedge fund




Number of month

Data : TASS-LIPPERS.
1984 Dec.=2006 Feb.

Data Length and Orders of AR :380 fund with 24 consecutive
records
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Reported Return Data

My Basic Worry/Wonder.

Return data time series is not an i.i.d. sequence,
but it is Autoregressive.

The Mean-Variance approach is
(or implicitly thought of)
statistically based on
i.i.d. assumption?



ARM®) or AR(0).
We first identified each MONTH, either it is AR(+), or AR(0)

12 month data ending at the MONTH has AR structure of
order 1 or more under AIC model selection, then it is AR(+).
Other wise it is AR(0).

: Then, we see if the AR(+) frequency within 60 months,
is related to “estimated” mean, variance, (“estimated”
moments).

We identified all the month for all the individual hedge
funds for analysis. This is one way to summarize , otherwise
diversified results of statistical analysis.

Data (Lipper TASS)
218 Hedge Funds had 72 consecutive monthly records
ending at February, 2006. We used this data.



Purpose of this work is, with the data taken from Lipper
TASS ;

: Recognize the Autoregressive Structure of Hedge Fund
(monthly)Returns

Statistical Data Analysis Has been done in the literatures
implicitly assuming “ Returns are Independent and
Identically Distributed”. We should like to see if those results
are related to, or biased by its AR structure.

: Examine the following aspects that are usually said of
Hedge Funds returns.
(1) Skew and kurtosis of distributions.
(2) Option features of returns
(8) some modifications for Sharpe Ratios



218 Funds in 10 categories

Category The number
of funds
Managed futures 47
Dedicated short bias 4
Multi-strategy 15
Equity market neutral 13
Fixed income arbitrage 3
Convertible arbitrage 15
Global macro 6
Event driven 19

Long/short equity hedge 76
Emerging markets 20




Mean & Variances vs. Frequency/60 of AR(+)

:a) Average Returns regressed on Freq. AR(+)
:Managed Futures
:b) Estimated standard deviations regressed on *
:Convertible Arbitrage
:c) Estimated skewness regressed on *
:Convertible Arbitrage
:d) Estimated kurtosis regressed on *
:Managed Futures
(Emerging Market has a strong positive slope)
:e) Option=Portfolio-like Nature by Hockey-Stick Regression
Convertible Arbitrage
:f ) Sharpe Ratio
No clear relation in any category
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d)Managed Futures: Estimated kurtosis regressed on the same
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Section 3.

: A regression analysis to see how much
they look like “Hedge-Funds”.

: Trials for Data Analysis based on
Brownian Nonparametric Statistics.



Section 3-1.

: A regression analysis to see how much
they look like “Hedge-Funds”.



Independent regression variables
(Factors in a style analysis)

f1: MSCI World INDEX Monthly returns

f2: MSCI Emerging Market Index Monthly return
f3: Citi World Government Bond Index Monthly
f4: Citi Emerging Sovereign Bond Index Monthly

PC1~PC5: Currency Exchange rate Principal Components from 9
currencies.

NY market

FH1~FH5: Look-back Straddles by Fung&Hsieh



Construct our Currency Factors

Currency Exchange Rates Factors
By Principal components

Based on 9 major currencies ;

(vs.US Dollar) JPYen, Euro, BPound,

SwissFranc, AustraliaDollar, CanadaDollar,
NZDollar, Brazil, Chilli



BEDITI2EERT B,

DT R BRI £ 2002/08H 52007/070D 604 A ST 5 (L RhfEH LIBT)
DATA: 2002.August===2007.July. 60months. Principal Components Analysis
2002/08H52007/07DRAICA REILREZEHTESAUTDIEE GHERFILBERT)

R Y e T N L O e SNy e T I
JPYEN, EURO, BRPOUND, SWISS-FRANC, AUSYRALIA, CANADA, NEWJEALAND, BRAGIL, CHILLI

Z2EEFEE Accumlated contribution
Comp. 1 Gomp. 2 Gomp. 3 Comp. 4 Comp.5 Comp.6 Comp. 7 Comp.8 Comp. 9
0.421 0.740 0.815 0.874 0.921
F5E Eigen Value Contribution
Comp. 1 Gomp. 2 Gomp. 3 Comp. 4 Comp.5 Comp.6 Comp. 7 Comp.8 Comp. 9
0.421 0.319 0.076 0.059 0.047 0.038 0.023 0.016 0.003

Comp. 1
M JPYEN 0.146
1-0 EURO -0. 152

HE Y6 Pound -0.129
AA. 752 SFRANC 0. 101
= b JAUSTRAL | -0. 276
B4 . b WCANADA 0. 187
1=y -3y F i -0. 215
7°3%" W71 BRAG 0. 832
F).A"y CHILI | 0. 281

Comp. 2 Gomp. 3
0.225 -0.337
-0.394 0.302
-0.359 0.104
0.449 -0.439
-0. 302 -0. 304
0.153 0.252
-0. 370 -0. 498
-0.460 -0. 227
0.026 0.369

FREDZEITAELTELZ . 9BEDAREILEDRINEMAEHEDZET. BRDBEI773%ERLT=,
(BHICERRBRZAVEISESICE SHEOBREICHETHFIMEDT=0 . FIYMN0LL-TLED,

Comp. 4 Comp. 5
0.387 -0.160
-0.019 -0. 055
0.131 -0.224
0.008 0.032
0.097 0.143
0.113 -0.838
0.411 -0. 255
-0.201 0.027
0.775 0.363

0.959 0.982 0.997 1.000

Comp. 6 Gomp. 7 Gomp. 8 Gomp. 9
0.773 0.106 0.107 0.141
0.368 -0.012 0.275 -0.718
0.098 0.448 -0.752 0.036

-0.230 0.278 -0.196 —0. 653

-0.196 0.641 0.487 0.158

-0.260 0.162 0.262 0.007

-0.234 -0.520 -0.052 -0. 084

-0.021 0.039 0.022 -0.019

-0.209 0.051 0.017 -0.069

SE. 7020 FEYITEBLE=OMEITIOIZ, LD KSLGT7/5EHETo1)



SP500

PTFSSTK

-02 00 02 04

Look-back Straddle (SP500)
Return time series :Fung & Hsieh
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These Replicated Look-back Straddle has negative
average returns

We use these in our regressions to see the
sensitivities of return variability with respect
to these replicated Look-back Straddles.

i.e. we will do a cross-sectional regression

later to analyze the average return of Hedge
Funds.



ElFET ILDERBA Regression Models: Adding the independent variables

1. %KX T7795DH. Stocks Factors Only

2. B D705% BN (#K+E%) Stocks and Bonds Factors Only

3. BB I7U3%EM (X +EZH+5BE) Stocks , Bonds, and Currencies

4. ~NYOIFURITIEEEM (MR HEFHF+ BB +ANYDT7URTF7H4) Trend Follow Factors Added

modelt  r=a+by Ty +0, Ty +e
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Decomposition of Returns
into three components.

kt
R = M + Zaf,t(R:—i — ) + &

=1

Not only the whole returns, but also the AR part will be
regressed on the factors. To see how it will be explained.

Our View on AR part of Returns
Hedge Fund managers/traders may well know AR part of the month (?)
since they know what they are doing. Then, the stochastics to them is
not Rt, but only in €.
Then, investors outside would not know what AR for the month be.



Variability
: AR structure occupies quite a part of return variance.
:So, we look at both Whole return and its AR part.

Discretionary_5316
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Emerging Markets : 55 funds

We look at how much the fitting is improved with the
additional groups of factors.
Then, we look at if it is related to the levels of Average Returns

: (1) Each factor group provides improved Fitting (Adjusted R-
square).

(This means that Hedge Funds have common factors with a usual
[Stock+Bond] portfolio; This may be consistent with a statement;
“Including Hedge Funds into a usual portfolio helps to increase
its RETURN and decrease its RISK, but only to certain percentage

amount. If it takes more than that, it will increase RISK”.)
3Kk 3K 3k 3k 3k 3k 3k 5k 3K 3K 3K 3K 3k 3k 3k 3k ok ok ok ok Sk %k Kk ok ok ok sk sk sk

: (2) 41 funds out of 55 funds in this category have their Adjusted
R-squares improved with look-back straddles.



MAF=ESDIREFZRE

0.8

REAZE 2k

E
0.6

1}

)%

=]
=T

/\?

TH

BT, BBEDSDDT7I4H(

1.0

0.4

0.2

0.0

Emerging Markets_S55

302
43
384
B
450 o8
4 BERY,
4158
| 260K 2626 3654
73068 OF
304
25r
| 5344
2780
5610 5&%
2
1847 60
684%%&
B 86 29506
7007
TR
5750
I i i i i i
0.0 0.2 04 0.6 0.8 1.0

BAZ7oED) -2 EE & EEDOKK, BEE/ & EEDRFARIFLERDRE R




R+ {EZ5+FX+FH5

1.0

0.8

0.6

04

0.2

0.0

Emerging Markets 55

MA=ESDREFRE

REAZE K

A

5758

202

i
55
200 379
53 RHT 7326
7133

oo T 59%9&%‘32@7:89

154 BB TS
BOGS

29588

5720
28EH0 R

LI, BODAYTITFURI7IR3%

u.0

| | | |
0.2 0.4 0.6 0.8

SeEE, & EEOKK, BFICmMR, 5A8D577947
FMA-ETIVICERL-FBORERZRE

1.0




FHE -y

Emerging
Markets IZJ& 9
5277 RM6
On A ) 52—

SO

Emerging Markets_55

0.03
|

0.02
|

\

0.00
|

5720

2879

56

407

2626

279k

260

loe|

ssT5|L V=B 4

0.0

0.2

04 0.6

FEE, & LEOKRK, BHFITNA, ABN57704%

FMA-ETIVICERL-FBORERZRE

|
0.8

1.0



BHEREFRAEFRBUCLILEREFITOICET, A I7UN I798F MA-CEMNET VDR EIZFE SLTLANEIEIE

S5
Ny ITUN TP AEMA TS EISE-T, BREREFRERENS LALEES, AAZORENTRE

BHEREFRAERBNBAOL-EGEICIEERZFELXHTRIE
Emerging Markets [ZJ&9 5
55KDI7URDS5,
Ay ITUNITHAE A T=C &
Emerging Markets £ 8 & 3 % 53R 5 312 041K/ 45 TITMDHEL AT
7RI K
g i Spx———————=
(o'}
S - 40TF =
5610r
Y 5537
I
= - 263 331805
oo wr
B ° Sl I78% G4
3654
R BORG—== =37 45059 z
M@ﬂ . %ﬁg%(w_) 3025
8 | =5 el - o6 3849~
o
Sreha
304——= - 3602
5728
28TH—=
T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
54

BEE R ERE R



Next, we check if AR structure remains in the residuals.

The results

:The factors we used here do not clearly take off, or add
AR structures either. They do not seem to matter in this
regard.

Some funds reduces AR(+) frequency in the residuals,
some others do not, and some even increase;
As shown below.
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AR in residuals in the last regression model. 3317
Upper figure : P-value for testing Hypothesis “No Correlation” . Lower :Order of AR by AIC
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AR in residuals in the last regression model. 5759
Upper figure : P-value for testing Hypothesis “No Correlation” . Lower :Order of AR by AIC
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AR in residuals in the last regression model. 7007
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AR in residuals in the last regression model. 562
Upper figure : P-value for testing Hypothesis “No Correlation” . Lower :Order of AR by AIC
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We should like to know if look-back straddle

reduces the AR structure(AR(+) freuency) of

returns since this added factor is expected to
explain a nature of Hedge Funds.

:The result here shows “Not Really So” with
this factor (only?). The regression residuals
still have AR structures.
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AR in residuals in the last regression model. 7144

Upper figure : P-value for testing Hypothesis “No Correlation” . Lower :Order of AR by AIC
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AR in residuals in the last regression model. 2819
Upper figure : P-value for testing Hypothesis “No Correlation” . Lower :Order of AR by AIC
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Tentative Conclusion for Part 2.

We see that Coefficients of Determinants (adjusted R-square)are

improved by adding more group of Factors, though not fully explained.

But,
The residuals still have AR structures.

So, there must be other factors, such as returns of technical trading
strategy, might be tried to explain it.

Also, we note that Intercepts in the regression have not been
explained by these factors,

since the variability has not fully explained by these market-available
factors.

We will look into this Intercept in the following.
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Part 2.

Return Regressions and
for Intercepts

60 months data (Aug.2002- Jul.2007)
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Our View.

In a Regression with Least Squares methods, the estimated
intercepts may be roughly interpreted as the difference between
Average returns of each Hedge Funds
and the factor contributions
; sum of{ (factor average)x(estimated coefficients)}.

So, we look at the estimated intercepts in the four(or three) models.

(Discretionary and Emerging Markets)



Emerging Markets



Change in the estimated Intercept modell through 4(or3).

This change reveals how much
,(estimated Beta)x(average of the factor variable),

the factor takes out of the average return, as shown in the
definition of intercept.

In other word,

how much alpha the Hedge Fund takes beyond the
market=available factor (regression independent variables) does.

We should look at how much the estimated intercept has
decreased

;how much in each step, the factor took.



Test : Hypothesis “Intercept = 0”

If Intercept is zero, it means that alpha is taken by the factor
variables, i.e. the hedge fund CAN BE REPLICATED by them in terms
of expected value. The error amount can be seen from the
residuals in this regression analysis.

The intercepts decreases in each steps.

There are negative intercepts, which means that in Least square
method, intercept seems forced to be negative in order to fit best
(estimate beta and intercept) at the same time.

We do not need to interpret the estimated value of intercept in
these cases because it may outside of scattered data points area.



P-values for Hypothesis: Intercept=0 :
Emerging Markets 55 funds

Rt Returns

: # of funds (all P-values are less than 0.05) are 7 *
# of funds ( P-values are rather small ) are 7 ==

: # of funds (all P-values are far larger than 0.05) are the rests
n+AR(+)
All small: less than either 0.05 or 0.08, are 40 Funds .
All are rather small, are 10 funds.



A Characteristic of Hedge Funds
: Emerging Markets

Autoregressive nature of Monthly Returns.
o 3K 3K 3K 3k 3k 3Kk 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k ok ok k %k %k k

Intercepts of Autoregressive part of returns, in the
regression, are

Statistically Significant.
But,
Intercepts of raw Returns
Are not so significant.

What does this mean ?



Next, Discretionary



P-values for Hypothesis: Intercept=0
:Discretionary 20 funds

Rt Returns

3k ok sk ok ok ok ok sk sk sk sk sk sk sk sk ok ok ok

: 4 funds have small P-values and
:3 funds have rather small ones.

o 3 3k 3k 3k 3k ok sk sk sk 3k 3k 3k 3k 3k sk sk sk 3k sk 3k 3k sk sk sk sk sk 3k 3k sk 5k 5k sk sk 3k 3k 3k sk 3k sk sk 3k 3k 3k 3k 5k ok sk 3k 3k 3k 3k sk ok sk sk ok 3k 3k ok 5k sk sk sk 3k 3k 3k sk sk sk sk ok 3k 3k 5k ok ok 3k 3k 3k 3k ok ok ok sk ok ok ok ok ok ok ok sk sk ko sk sk sk sk sk kk ok

n+AR(+)

ok %k 3k ok %k %k ok ok %k %k ok kk ok

: Almost All 20 funds (except two) have very small P-values
in the regressions where AR part of returns are regressed.

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 5k 3k 3k 3k 3k 3k 5k %k 3k 3k 3k 5k 3k %k 3k 3k 3k 5k 5k 3k 3k 3k 3k ok %k ok 3k 3k ok ok 3k 3k 3k 3k ok ok ok ok ok ok sk sk k ki k ok

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 5k 5k 3k 3k 3k 3k 5k %k 3k 3k 3k 3k 3k %k 3k 3k 3k 5k 5k 3k 3k 3k 3k ok %k ok 3k 3k ok ok 3k ok 3k 3k ok ok ok ok ok ok sk sk k sk k ok

: So, Discretionary is more like Hedge Fund than Emergency
Markets ?



77934 77930607 H Ty
Average of Factor variables
MSCI_WI 0.011131433
EMI 0.023584299
WGBI 0.002689500
ESBI 0.012380917
FX.PC1 -0.015704190
FX.PC2 -0.007962332
FX.PC3 -0.004358038
PTFSBD -0.055600041
PTFSFX 0.004591759
PTFSCOM -0.004099968
PTFSIR -0.038718039
PTFSSTK -0.053475375






Section 3-2.

: Trials for Data Analysis based on
Brownian Nonparametric Statistics.



Cumulative Retum

Cumulative Retum

91 Hedge Fund Convertible Arbitrage
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Example.

Sample size n=6.
Time-Points: t, <t, <t;<t,<t. <t
Observations: X, X.,, X3, Xias Xis) Xie-

Consider a case where
Xi3< X4<Xi1<Xis<X;, <X ; start-up-down-up-up-up.

o 3% 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 3k 3k %k 3k 3k sk %k 3k 3k sk %k 3k 3k 3k 3k %k 3k 3k sk %k 3k 3%k sk ok %k 3k 3k ok 3k 3k 5k sk 3k %k 3k 3k 3k %k >k 3k 3k sk %k 3k 3%k ok 3k %k 3k ok 3k %k %k 3%k 3k %k %k 3k 3%k ok %k %k %k %k 5k k *k

a.=i/6, m(a,), Rank(t) ,i=1,2,...,6

Xis< X< X< X< X< X
m(a;), m(a, ), m(a, ), m(a;), m(a, ), m(a;), m(ag),
Mapped Time t;, t,, t,, t., t,, te,
Rank 1, 2, 3, 4, 5, 6

o 3K 2k 3k ok ok 3k ok 3k ok ok ok 3k ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok 3k ok 3k ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok %k
tEl’ .t:Z’ .tE;’ ltzl’ ltE;’ t%;,
Rank(t, 3 5 1 2 4 6
( |) ’ ’ ’ ’ ’



Figures illustrating
the defined times and values

: (2) Two Sample:
[Cumulative Returns of Fund 91]
And[ Cumulative Returns of Fund 2380]

(m(a,X)-time, m(a,Y)-time).

Note: values of a are indicated by colors.
(m(o,X)-value, m(a,Y)-value).

Note: values of a are indicated by colors.



91 and 2380

Convertible Arbitrage.
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Recall the Statistical Properties.
Invariance under Monotone Transformations

:Utilize the good properties of nonparametric quantities.

:Use monotone function¢ to transform X on Real line [or,
equivalently, h(.) to transform F(X) on [0,1] and reverse them
back to a real line] .

Note:

:Time-maps are invariant under the monotone transformation.
:Ranks do not change.

:Quantiles m(a) changes in their values (equi-variant), but time-
map does not change.

***************

Invariance and equi-variance

under location shifts, scale change and monotone
transformations.



A Trial for Data Analysis

Some Trials by Principal Component
Analysis.



Classifying the Hedge Funds

Principal Component Analysis and Cluster Analysis.

: Using a time series of Ranks of Cumulated returns of a fund
for each fund.

: Or use a time series of cumulative returns.

: Ranks seem to be able to distinguish the categories of
Strategies!? IT WORKS I?

:The closeness measured here will be equivalently measured
by “ Rank Correlation”. But, we do not know yet a probability
distribution of this “ Rank Correlation” statistics.

Note that Ranks use only the information of relative magnitudes of the values.
Also, note that Ranks are invariant under monotone transformations, scale change

and location shift.



Principal Component Analysisi

Strategy Category:
Convertible Arbitrage &
Emerging Markets

Data Period: January 1999 to December
2004

Data: Cumulative Returns
: Ranks
: Mapped Times



Clustering based on Principal Component
(EigenValues 5values for each hedge fund)
Data: Cumulative Returns

BB X euclid norm
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Clustering based on Principal Components
(EigenValues 5values for each Hedge Fund)

Data: Rank of Cumulative Returns
IR E# (X euclid norm
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Clustering based on Principal Components (EigenValues 5values
for each Hedge Fund)

Data: Mapped Time from Rank of Cumulative Returns

BB X euclid norm
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Section 4. Using Spacings

: Introductory intuitive explanation of the
situation where this was used.

: Then, we estimate the asymptotic variance
of truncated Hodges-Lehmann’s estimator.



Adaptive estimation of location of symmetry

: Huber’s Gross error model centered at Logistic
distribution.

: Least favorable distribution.
: Truncated Hodges-Lehmann’s estimator.

: Adaptive <==> the suitable amount of truncation,
which minimizes the asymptotic variance of estimators
among the family members.

Miura(1982)



+ 2399 sgn xi—0) (27:0))

i

a(t) = _ S (B Y(2+-1)/2))
Jo(F~H((2+-1)/2)

For the above g and any ¢ such that 0<<e<<1, define g,, the density func-
tion of the Huber’s least favorable distribution, as follows.

(1—¢) g(—xp) &&= for x=—x,
gx) = {(1—e) g(x) for —xp<x=<x
(1—e) glxg) e~*===) for x,<x

where x>0 and k>0. x, and & are determined by the relations
(i) x, and —x, are the endpoints of the interval where l18'fg| <k

i) 5 2(x) dx+28 (x“) 1

l—e .




In correspondence to the above g,, define
agft) = Jg,(t—_l?:-lﬂ) for 0=t <1

where

' 2,/(G, (1))
1) = =416, w)

- (—k for 0fu<a
_ g'(G, ()
= {— t for a<u<l—a
g(G, " (w) =
¥ for l—a<u<l.

and «a = Sw g.lx) dx.

G, is the distribution function of the density g, and relates to G by

2t—¢
) = G (o — <t=<l.
G =G (2(1 a)) for 05t <1 -
We note that 2G(—x;) = 1— 11 2:{ :

We write a, or a, instead of 4,,, and J, or J, instead of J,, for the nota-
tional simplicity.
Let o, az be any numbers such that O<an<<ag<<1f2. Let C= {a,, e

[ars, t’l’z]} .



3.2. Selection rules. '
For all « € [o1, a.), the 'asymptotic length of the confidence interval
derived from the signed rank statistic with the score function «,, multiplied

P
by ¥ n,is ¢, {5: a,(u) du}1 ajd(a“) by Theorem 1. Qur interest is to choose

/
« which minimizes o(a) == {Sl a,? du}l 2/.«:1‘(.«;:'), where 4(a)=4(a,) for sim-
o

plicity. Let a, be such that ¢(a,) = minimum ¢{«). Note that such ao cxists

o £ [eegy gl

by the continuity of ¢(«) on the compact set [, «z]. Since the numerator is
known, 4(«) is the quantity to be estimated. The unknown factor in 4(«) is
K.



3.3. An Example.
For the sake of applications of the adaptive procedure, we illustrate the

simplest (trimmed Wilcoxon) case and give some comments.
When G is logistic, i.e. G(x)} = (1+e~*)"! for —oo<x <00,
J(t) = 2t—1 and a(t) =t for 0=t <1,
For 0<e<1, we have by definition,
Qa—1}/(1—e) for 0=
J(1) =Q2t—1)[(1—¢) for a<t=l—a
(1—2a)/(1—e) for 1—a<t=<l



and

t/(1—eg) for 0120

a(t) ={(1 —2a)/(1—¢) for 1-2a<t <.

The statistics with these scores are called “trimmed Wilcoxon”’.

The relation of the constants w, ¢, x, and k is given by the equations

e = (1=kY(1+k3, xo =Ilog (1+k)/(1—K))
and k =y (1=2a)/(1+22) - |

It is easily seen that when any one of the constants is given, it determines
all the others uniquely. The above relation implies 1 —e = /T —4g2 . There-

fore the trimrhed score function for the present case is for 0<a<1/2,

N1 —4a? for 0Lt <12
¥V (1 —2a)/(1+22) for 1 2a<<t<£1.

2.(0) ={

« indicates the amount of trimming.



[

The graph of a,, is given in the Figure 2. |
Figure 3 displays the probability distributions of 7T,,(f,) X # in the two
cases where the score functions are the above defined ¢, with ¢ =0 and @ =

Figure 2. Graph of a.(r).

& =015

&= {0.25
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1. Introduction

Let X, ..., Xy be ii.d, real random variables with
unknown density f, symmetric about the location
parameter &. Let &, be the rank estimator of & based
on the score function J, introduced by Hodges &
Lehmann (1963).

The estimation problem of the asymptotic variance

o*(€;) = {L J@YFFH()) df}_ fn J(¢y dt

of é:a where j=J’, has been studied by several
authors. See Schweder (1975) for a view on this
problem. In this paper, we study the estimation of
o*(£,) when J is of a special type.



ﬁir a fixed score fI;nCtiOn Ff, and for each « such
that 0 <« <1/2, define the a-trimmed score function
J, of J by

(K for 1-a<fx<l
J )=y CJ() for <t<l—~«
| —K for O0<st<a

where K and C are constants depending on «. J,
corresponds to the Huber’s least favorable distribu-
tion, introduced and studied by Huber (1964} and
Jaeckel (19714). The asymptotic variance o%(&,,) of
£ 12 18 @ quantity of interest in the adaptive estimation



procedure studied by Jaeckel (19718) and Miura
(1976). There, o*(£,,) is estimated for a fixed J and
a discrete set of the values of «, so as to give an
order of preference to these values of o.

Schweder (1975) studied the estimator of the as-
ymptotic variance, based on window estimates of the
underlying density, which works for a wide class of
score functions including the trimmed score func-
tions. The spacing estimator we will study is easier
to compute than the window estimator. We will show
that the two estimators are asymiptotically »¥*-order
equivalent.



Let X{i) be the ith order statistic, then 2Axn—/
{X@i+A)~X(@~A)} is the spacing estimate of
J(F~(ijn)), where A is an integer-valued function of
n. Let

O = f ) JDfF () dt

[+ 4

then our estimate 8,(«, A) of 6, is

] B 2An71
(o 8) = f_znf( )X(:m) X(G—-A)

where n, = [ne] +1, ny =n—[ne] and [ne] = A, [x] de-
notes the largest integer not exceeding x.



Lemma 1. The rank estimator & rafor 0 <o <t is un-
correlated with the spacing estimator

1 12 -
6 = [ f .r::(u)du] / 0. A)

of the asymptotic standard deviation of &, provided
J, satisfies J(t) = — J (1 —t).

Proof. By the definition of 8,, and by location and
scale equivariance of &;,,

ErelE+ Xy vy E+ X)) =26 -8 (E— Xy, oo E—X,)
B E+Xy, .y E+X,) =05 -X,, ..., X)),



¢, and 8,(e, A) are odd and even functions around
£, respcctwely Since the distribution is symmetric
around £, £ 7o and 9n(ar A), or cr(é 1) re uncorrelated,

When é 1o, 2Nd 6,(c, A) have asymptotlc joint nor-
mal distribution, they, and hence &, and 8(¢r,) are
asymptotically independent. The estimate 4(£,,) may
be used to standardize &;, just as Schweder (1975)
suggests for his window estimator.



2. Asymptotic distribution

In order to study the asymptotic behavior of the
spacing estimators, we adopt the method of Pyke &
Shorack (1968) and Shorack (1972).

Fet (Q, B, P) be a probability space with the
special random variables Uy, ..., U,, defined on it,
where the Us are independent and uniformly dis-
tributed on the interval [0, 1]. U(¥)’s denote the
ordered Uy’s and T,, denotes the empirical distribu-
tion function of them. We denote for each #€[0, 1],

W) =T, @) ~1) and Vu() =ni(T;() -1).

It holds that there exist processes W, and V, on
[0, 11 such that W,= —V,, sup {|W,(&) - W,@)|:
t€]0, 113-5 0 and sup {| V.(t) — Vo(t)|: £ €10, 113 50,
where -2~ denotes convergence everywhere on 0,
W, (and V) is a Brownian Bridge on [0, 1], that is,
a Gaussian process with mean zero and covariance
function s(1 —¢2), 0<s<f<1.



We first derive a uniform bound for the spacings
UG+A)—U@G—A). Let o, and «, be any given num-
bers such that 0 <oy <y <%, Let »=[no]+1 and
# =n—[noy). Note that 2 <[n«]+1 and 7 =n—{na]
for all ee[e,, «.]. Let, for i={ne«] +1, ..., n —[ne],

UG+ A)-U@G-A)
Y= :
2An

Lemma 2. Assume A <[ne,], then

S'Llp{ I Yi_'l I: f=?3': @'1‘1: very 'ﬁ'}
<0, A~ (log n)'* (log log n)*"

+0 (&"’”“ (log E) 1;2)
P & ’



Proof. Using the identities;

R h_f_ﬁ)_;
n+t T \n+1] n+i

1 o LA
15 (755) 2 (2 (75))

i
nn+1)

U@) -

we rewrite Y, ~1 as follows.

[ fi+A i—A 1
Y,—1=-— —V, — ) -—
¥ 2A kV" (n+1) Va (n-i-l)} n+l

' ( L fi+ A 2fi-A
o {7 (0 () o (7 (53)




Decomposing this difference into five parts, we
obtain

SUPngigi| Yi—1|

n”’* L fi~A 1 i—A))
(oo 7 () (e 25

ZA

Jfi=-A — A
supy| Wy (Pﬂ‘ (m)) " (m)’

i~ (74 A
+sup; | W, (—w) - W, g_mn+ 1)

i+A (L [i+A
s ) - (5 (5)

+sup, W.,( 7t %)) & ( 1(;:?))“

L2
n+1

=D ,+D.,+D . +D,  +D,  + .
il na T3 nd nG B+ 1



Since

sup, { T';* ( ) B
Pyl ln n+1 n41
1
<SUPsgten [TR(#)—#] + e
it holds that
sup; | 7" ) LI (=%,
n+l/ n+1l ?

Now an application of Lévy’s module (see, e.g. Itd &
Mckean (1965), page 36) to D,,, D,, and D,, and
that of Brillinger’s approximation (see Brillinger
(1969) and Bickel & Rosenblatt (1973)) to D,, and
Dy,5 imply

1/2

supy | %-1] <2 {op(n-”* (log )" (log log n)'")

+ 0, (n " (log n)''*)

ol ()

Hence the result is obtained.



Let

. _ .1, T f_ 2An~1
67 (o, A) = - izhb (n.) UGE+A)-Uli~A)

where b(¢) =j(#)f(F-(¢)). We derive the asymptotic
normality of G5(e, A) preceding the main result,

Lemma 3. Assume that the second derivative of b exists
and is continuous on [, 1 — o] for any o in (0, 1/2). As-
sume also that A <[n«] and ntA-1log (n/A)~0 as
n-co. Then n¥{0i(a, A)—8,} converges in distribu-
tion, as n— oo, to a normal random variable with mean
zero and variance o; given by

or=2 ff b (Yb'(s)s(1 - t)dsdt
g<gal<l-t
- 20(b(e) + b(1 — &) f - b)) tdt

+ 2ab(x) f _ab’(e‘) at + (1 — ) {b(e) + b1 ~ )}
—2ab(eg) (1 — ).



Proof. Denote Y,={U(@+A)y—-U(G—A)}/(2An™)
as before.
Since IIY-; =2 - Y; +(Yi "‘1)2/}’{, we have

g:(mﬁ)ﬂl ﬂib(i) {Z_U(i+£)—U(i-—A)+In

; f=73 n ZAIH

2 N i ] ™ i
“2.2b (z) “28.,2° (z)

x{UG+A)-Ui-A)}+1,
=ZA,+B,+1,

where

1™ (i) (¥,—1)
135

?I i-nl ?I

Since & is bounded, 7, = O, (A (log (n/A))).
Therefore, since ntA-1 log (n/A)—~0, n*l, converges
to zero in probability as #—>co. Now



Theorem 1. Assume that J is twice and F- is three
times continuously differentiable on the open interval
0, 1). Assume also that n*A-'log (Ajn)—~0 and
An~— >0 as n—co, Then nt{f,(«, A)—6,} converges
in distribution, as n—~ oo, to a normal random variable
with mean zero and variance

1wz i
n'2=2f f c(t)e(s)s(1 =) dsdt
— 20b(@)+b(1 - 2} f " eyt

+ 2ocb(o=)f h e(t)dt + el — e} {b{er) + b(1 — )}
— 2ab(ec) b(1 — ).
where b(t) =j()f(F-(t)) and

FFE(@)
fE@)

e(t) =b"(¢) +j ()



Proof, We identify X(7) with F~U@)) for all #’s
under consideration. Then our estimator is

1 Mq f 2&/”
Bnlo, A) =— ;ZMJ'() FYUG+A)-F Y UG-A))

Now let

Cmf( ()) “NUGE+A))-F Y (U@E-A))
: n Ui+A)-U@E-A)

and Jet

_U@+A)-U(E-4)
¥ 2Aln

as before.



Then, from theequality 1/x =1 +(1 —x) + ({1 —x)¥/x,
we have

o=, 20 G G)

¢ —ci)ﬂ} 1
¢, |7,

x{1+(l—C})+

as in Lemma 3.



By Taylor expansion,

-oimaie () ()
n H
[+ A [ — A
K{U(f+£l) - _I_E_ + U(i—-A) - IT}-[-IR;

where g{()<F-(¢) for 1€(0, 1) and

g (a) {U(z‘ +4) ’;} - (aP) { UG-A) - i}
(UG +A)~ U(i—A)}

Iy =

for @ between ifn and U@ +A), and o between
Ui —A) and ifn. For A such that Afn? - co as n—+ oo,
Lemma 2 implies

sup {},:: 2 <i <A} < 0,((A/M)Y (2.2)

under our assumption on F-1,

a8



Hence it holds that
sup {|1-Cil:n <i <@} =0,n?)
since sup {n}{T';1(¢) —¢]: e <t <1 —s&} is bounded in

probability for any fixed 0 <& <.
Thus

ntt “{ﬁﬂ(a, A)—8,.}

PFm)
”ﬂ > i ()f(F‘l(ffn))

fﬂﬂ]_
{U(:m) AL va- RA].
1% i 1 ]
+ nt? F1 — — @, +
30l 3o}
=1, +1I, +o0,.

T Annvarocar A6 3 =x -~ ararinaharsa o



I, converges, as n- oo, gverywhere to

f o V,(¢) dt +b(e) Vel@) —b(1 - o) V(1 — <)

-4

as shown in the proof of Lemma 3. In the same
manner I, can be shown to converge everywhere to

FEE@)
d 00,
J; j(t )f(F'I( o~ V,(¥)dt asn

Therefore, we conclude that n#{0,(e, A) —8,} behaves

asymptotically the same as the sum of the above
limits:

L L SET@Y
b!‘
+b(e) V(o) -1 —e) V(1 - ) 2.3)

which is normal with mean zero and the variance o?
stated in the theorem.



Remark 1. It J{t)= —J({1 —1t), then b(z)=5b(1 - 1)
and the asymptotic variance o2 is given by

g2 fl_u e(t) c(s)s(1 —1)dsdt

-4

+ 20b(et) f N c(t) (1 ~28) dt + 2a(1 — 20) {B()}.



Remark 4 (Asymptotic equivalence of window- and
spacing-estimators). For the type of score j con-
sidered in this paper, our spacing estimator is asymp-
totically n¥-equivalent to the window estimator; let
8, (w) be the window estimator of 6,. Schweder (1975,
1981) showed that »¥{8,(w)-0,} is asymptotically
equivalent to the random variable

2 Lf (FEFET () Wyld)+ L FE@) W @)jd)

where W,(¢) = n*{_Fn(F ~1(t)) -t }_En*{]f‘?(f) —t} g



By intééré.tion by -pa:rts, this is equal for our j to

f’(F"I(r))} 9

_ J i Wn(r){f’(r)f(F'i(f N+ 7 1)

+ f B W) fF T (@))7(2) de

+jl =) fF (1 -a)) Wp(l -
— J (@) fF () W(e)-
Under the everywhere convergence of W, to W,

(= - V,), this converges everywhere {o (2.3) which
is also the everywhere limit of #*{8,(a, A) —6,}.



Corollary 1. For each y such that 0 <y <}, let A=n#
where }+y2<p<1l-—y/2. Then, n?{8,(x, A)—6,}
converges to zero in probability as n-» co, uniformly
in o such that o, <o <d,,

We conclude by pointing ocut that the bounds in
(2.4) and (2.5) are independent of the values « such
that o, <o < o,

Corollary 1 provides the validity of the use of our
spacing estimator in an adaptive procedure proposed
by Jaeckel. (See Jaeckel (1971), Lemma 2 and Miura

(1976).)



3. Monte Carlo results on the choice of width
of spacing

Some Monte Carlo studies have been carried out to
see how the performance of the spacing estimator
8,{(«, A) depends on the choice of A for each fixed

For each of the samples of estimates, the mean
and the square root of the mean squared error were
calculated, The empirical results in the case of
Cauchy distribution and sample size 40 are presented
in Table 1. The results in the other cases all display
the same pattern: The mean and the variance are
both decreasing in A, and they both decreases slowly
in the range of A 2. For each of the four distribu-
tions, and for each « cosidered, the value of A at
which the mean squared error has a minimum was
picked up. They are listed in Table 2,



Table 2. Empirical best choice of A
When nae=1, A has no other choice than 1

n=20 n=40

Distributions n¢... 23435 23456782910
Standard normal 2345 23456788 6§
Logistic 2345 23456778 9
Double exponential 2344 23456677 17
Cauchy 2344 23455556 6
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The adaptive trimmed Wilcoxon estimator thus defined has the following
property which can be proved in the same way as that of Lemma 1 in
Section 1. There we should include that the shift and scale change of observa-
tions, X;:4=1,...,n, and the flipping of them around the center & of
symmetry do not change the choice & of the best trimming proportion.

Lemma 5: The adaptive trimmed Wilcoxon estimator Wafor 0 o<}
18 shift and scale equivariant, and is uncorrelated with the spacing estimator

1 i
(W)= { of J; (£)dt } / 8.(Ja, K, A) of the asymptotic standard deviation of

W3, provided that the second moment of X’s exist.



Comparisons with the adaptive trimmed mean. Lot X, denote the trimmed
mean and X; denote the Jaeckel's adaptive trimmed mean.

Cl.  Define the asymptotic efficiency of W, with respect to X; by the
ratio of their asymptotic variances.

en(W., Ep) = Bk = {Tropa apwaiene )| Trepar

*

X 12/(1—24)%(1—20)2(1+4a).



yo-—--

it is not well known. Its proof is in.the spirit of Hodges and Lenma.nn (1956)
and Bickel (1965), and is omitted here.

Let & be the class of all the symmetric (about zero) distributions satisfying .
the regularity conditions for the asymptotic normality of the estimates of
location. Then,

supfer(W,, X;) : F e &} = o0
" 0-864 X B(B)/(1—28)2(1 —20)2(1 - 4ct)

- for 0Ca<h<t
inflen(W,, Xp): I ¢ &) =
1 0-864 X B()/(1—28)%(1— 220)%(1 44
' for 0 fga<i
where

. A . 2 e
(t) = {1—|—4t—|——3- X /311 1) }{ 8124 1——= X (L+-42)y/ 3+ 1) }
for 0 < <t <

By a numerical tabulation of the lower bound, we find that for each given
B the lower bound is maximized at o = 8 and this maximum value increases
strictljr to one as « = £ increases to §. We find the same thing on the other
way around except for small values of a (< 0:04) where the maximum is
attained around g = 0-04.






Bahadur’s representation theorem in iid
case, and weakly dependent

Spacing estimate was discussed for iid case.

Biao Wu seems to have obtained Bahadur’s
representation in an extended case (non iid).

Also, there is a new result for a convergence of
weakly dependent sequence of random
variables.
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1. INTRODUCTION, NOTATIONS AND PREVIOUS RESULTS

Let (X,)nez be a stationary sequence of random variables (r.v’s) on a
probability space (2, F, ). Let F be the common distribution function
of (X,)nez. The empirical distribution function F, of Xy,..., X, 1s
defined as:

1

F(x):=F(x,0)== ) lywg:o *€R
I<ign
The empirical process G, based on the observations X;,..., X, is
defined by:
Gp(x) := Gp(x, w) = /0 [F(x, ) — F(x)]. (1)

Let D[—o0, +00] be the space of cadlag functions on [—o0, +00] having
finite limits at Foo. Suppose that D[—o0, +00] is equipped with the
Skorohod topology. The usual Empirical Central Limit Theorem (ECLT)
gives conditions under which the empirical process {G,(x), x € R}
converges in distribution, as a random element of D[—occ, +00], to a
Gaussian process G with zero mean and covariance



Cov(G(x), G(»)) = ) Cov(lxygs: Lx,y)- (2)
keZ

The proof of such theorem requires two steps:

Step 1. Establish the convergence of finite-dimensional distributions.

Step 2. Establish the tightness property.

In general, it remains to prove step 2 since step 1 follows from a
suitable central limit theorem, usually well known.

For the sake of simplicity, we suppose in the sequel that the marginal
distribution function F 1s continuous on R. This restriction allows to
suppose that the marginal law is Z/([0, 1]): the uniform law over [0, 1]
(cf. Billingsley [2]). '



Definition.

{X, ,n=1,2,...} is a sequence of associate random variables
If for every finite subcollection X, ..., X. and

for every pair of coordinatewise non decreasing functions
h(.)and k(.) : R" -> R,

Cov(n(Xy, ooy X ) KXoy, oo X;1)) 20,

whenever the covariance is defined.

Memo: This paper mentions that Gaussian processes are associated
If and only if their covariance function is positive,
referring a paper(Pitt(1982)).



2. MAIN RESULT AND APPLICATION

THEOREM 1.- Ler (X,),ez be a stationary associated sequence with
continuous marginal distribution F. Assume that, for n € N*,

Cov(F(Xl), F(X,))=0(n"?), forb>4, (10)

Then

Gp()— G() in D[—o0,+00],

where G,(.) is defined by (1) and G is the zero-mean Gaussian process
with covariance defined by (2).



Cov(F(X,),F(X,)) can be written as,
Cov(F(X,), F(X,)) = [[fu)f(s)Cov(ly -y Lix, )duds
<|[f[. Cov(X,,X,).

(Memo: (Y1,Yn) be independent of (X1,Xn) and
be distributed as the same as (X1,Xn).
Then, we have

COV(F(Xl,Xn):% E[{F(X1)-F(Y1)HF(Xn)-F(Yn)}]

Note: F(X)=P{V < X}=E_(I{V < X}) = j 1{v < X}(v)dv
, where V follows the distribution F. Also note;
F(X)-F(y)= j [1{v < x}-1{v < y}(Vv)dv.



