4t Day. May 11, 2011 (= 3hours)
[Non-parametric Statistics]

Nonparametric Inference for Generalized Lehmann’s Alternatives
(Transformation Models)
(Hinted by “A Family of Distributions with Monotone Likelihood”)

: (i) a principle of Hodges-Lehmann type estimation.
: (ii). One Sample Problem. Location Parameter.

: (iii).Two Sample Problem.

: (iv). Remarks.

(iv-a). Possible applications/relations of Transformation Models to statistical
problems in Quantitative Finance.

e.g. Skew-Normal Distributions.

(iv-b). Some remarks for extensions of the above results in iid cases to weakly
dependent cases: Brief Descriptions.
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Generalized Lehmann’s Alternative Models
(GLA models)

: Ideas and Models. Transformation of Distributions
: Statistics. Rank statistics.

: Estimation under H-L type principles.

: Asymptotic normality. Every-path arguement

: Remarks. Skew Symmetry.
From iid sequence to associated sequence.



Section 1. May 11. 2011

: (1-1). Generalized Lehmann’s Alternative
Model. (GLA model).

: (1-2).Remark.
Skew symmetry in GLA model.

: (1-3). One sample problem.
Statistics.



On the Model.

: Generalized Lehmann’s Alternative Models.

:Recall Lehmann’s Alternative in the book
: Hajek & Sidak (1967) [Theory of Rank Test].



§Z~ —-‘m‘;-d&i&"h LQL-M'\“ i’T g_{k %i;e’:r*"’ -~

i X2 HUT-R TR 35 -'ifcé it G A For £ 38p- <28 4T3 3,
1% {x; AL E igiswm, .

N= mtnr
G Lg, dsgew . cod

1:1
F= Vg, §=¥1&)g, ¢:lo11—>1011, )/

?"{. Riz G, Rh: rw.& = S‘“ S 5‘<2\) e fCZN) dit"‘dgﬂ
S

S= { (2\,“'/ 2~) VLA (B, ,2M)= 3:,'1"'3

&nkﬁ"'r{,l&.{\:-w.s
- b Vs 1
(f:)'s T I (Ve

d.
. VY —~~&, orden stat
Ly | 9 C VCT';)) 4 LS ih N

1]

( ::)-I E ‘{_ .ﬁ: LP’(@‘( Vcr.;ﬂ)]]

(f..’)_' E {_ ﬁ? \P’( Urm)} Uiy ~— [il]-'{lﬁw‘;m ord ¢
- ' TPy, stat.

ARt FrF ka5 Lo R,

P ) o $3y ‘

ot
PHE) = te, l-(l-*-)ol (1-8)t +9t2, e ~/¢

e-{ ¢



Definition. Let © be an interval in the real line. A function h(t;9) for ¢ € (0,1)
and # € © which satisfies the following (1) and (2} is called the generalized
Lehmann’s alternative model;

(1) 2(0;0) = 0 and h(1;8) = 1 for any # € ©. h(t;0) is a strictly monotone
function of &.

(2) There exists 8* € O such that h{t;8*) = ¢ for ¢ € (0,1). And for § > ¢,
R(%;0) < h(t;8') for all £ (or < may be reversed for all ¢ and & > #').

‘We shall also call A{F(-};8) a generalized Lehmann’s alternative model. In



Ezamples. Let F and @ be d.f.’s which are connected through the generalized
Lehmann’s alternative model G = A (F:; 8).
HEr0=1-(1—-t)forde (0, 00), then

Iﬂgﬁg = ﬂlug .{'LF,

where Ap and Ag are cumulative hazard functions corresponding to F and @
respectively. This model is the well-known proportional hazards model proposed
by Cox (1972).
(1) Taking h(t;0) = #[(1 - t)0 +1)~1 for 6 € (0, 00) yields the proportional odds
model: :

G 1 F

A
e g .

; 1-G 1 —F
This model has been considered by Ferguson (1967) and in more general regression

setting by Pettitt (1984), among others.
The above two models have usefis] and immnartont ameliano_ _



| TTTTTT Tessaldpusvauy appucadlons 10 SUTVIval analysis.
Other examples of our model include |
(iif) 2(2;0) = (1 — )t + 612 for 0 ¢ [0,1) (Contamination),
(iv) B(t;6) = (e — 1)/(ef — 1) for 8 € (0, 00).
(iil} was considered in Lehmann (1953) and (iv) was found in Ferguson (1967).
Both of these are Lehmann alternatives for which the locally most powerful rank
test 1s Wilcoxon. '
(v) A(t;6) = tf for 9 € (0, co} {Lehmann (1953)),
(vi} k(% 8) = 3, ci(0)¢ with >ici(f) =land (8) >0fr8ec @ (Mixture of
extremals by a discrete distribution).
(vii) 2(¢;8) = B(B~1(3) — log §) for 6 € (0,c0) where E is a known distribution
function over the real line. This model can be rewritten as ¥(X) = logd + ¢
where X ~ G,e~ Eand oy = E-1o F, and includes (i) and (ii).
See Dabrowska, Doksum and Miura, (1989) for other examples and Tsukahara
(1991) for interesting relations among such models.

-



Estimation principle. Miura (1987)

A Note on the Principle of Hodges-Lehmann Type Estimation

Ryozo Miura

- Department of Business, Osaka City University

ABSTRACT: The principle of Hodges-Lehmann type estimation is recognized, in this paper,
to find the parameter value with which the transformed observations are uniformly distributed
on the unit interval. The statistical models in this paper are expressed in a way that they
allow such transformations. The models include those for location, scale and the generalized
Lehmann’s alternatives. The asymptotic behaviour of the maximum likelihood type estimates
for the models are studied in general. The nonparametric estimability for the models is also
considered. The procedures for the usual rank estimates and the maximum likelihood type

estimates for a location parameter will be examined along with this principle.



2. Models and the Principle
(@) Let D and © be intervals in the real line. A function ¢(x ; 8) for xeD, #¢® is called a para-

metrized transformation if _

(i) foreach 8e®, ¢(x ; #)is a continuous monotone function from D onto D.

(i) forf,>8,, o(x ;8 )<e(x ;8,) for any xeD.

A statistical model is the explicit expression of the “understanding” for the observation.
Here our understanding is that the observation when transformed by a parametrized trans-
formation coincides with a basic distribution; X is distributed with G(}=F(¢(- ; 8)),equivalent-
ly (X ;@) is distributed with F, or F(@(X ; 8)) is uniformly distributed on the {0, 1) interval,



For the one sample case where X, X,,. .., X,, are independent and indentically distributed
(abbreviated to ii.d.) with G{*)=F(¢(- ; 8)), we are to find the parameter value § which makes
the set of transformed observations

{X;:8):1=1,2,...n}
distributed as likely with F as possible, or

{Fle(X;:0):i=1,2,...n }
distributed as upiformly on (0, 1) as possible. When the hypothesis “6=8,” is tested, we are
to judge how uniformly the above set, with the hypothetical parameter value 8, , is distributed.
For the judgement of the uniformity of the set of the variables, several types of statistics

may be available.



Remark

Skew symmetric distribution as a
specific case of Generalized
Lehmann’s Alternative
model(GLAM)



Skew symmetric distribution.

Let F be a symmetric distribution function,
say standard normal N(0,1). F(x)+F(-x)=1.
F(X) be skewed to G(X)=F(x){2F(ox)}.
When 6=0, we have G(X)=F(x).

Note that F in {2F(o%)} can be replaced
with any other symmetric distribution function.



From my viewpoint, {2F(ox)} iIs acting to make F skewed.

Then, take h(t:0) = t{2F(SF (1))}

G(X)=h(F(x):0) = F(xX){2F(5x)} can be regarded

as an example of GLA model.

This will be a semi-nonparametric approach

for skew symmetry problems.

In order to make a skewed shape, a family of {h(t:0), 0 € ®}
can be used.

We may fit the data to see what functional form for h(t: ) be suitable.
. Estimation of h(t: @) when F is fixed and a known function.

{(F(X4), G, (X)), 1=1,2,...,n} for observatons X;, 1=1,2,...,n,
where

G, (.) 1s an empirical distribution function of these observations.



So,

when the skew generating part h(t:0) = t{2F(SF *(t))}
satisfy our conditions (Homework 4),
then,

the asymptotic normality of estimators in skew symmetry models
had been given in the framework of GLA model,
at least mathematically.



One sample Problem.

Rank Statistics
and
Estimation based on Rank statistics.



giatistice Sinica 5(1993), 83-101

ONE-SAMPLE ESTIMATION FOR GENERALIZED
LEHMANN’S ALTERNATIVE MODELS

Ryozo Miura and Hideatsu Tsukahara

Hitotsubashi University and University of Illinois at Urbena-Champagn

Abstract: This paper shows that nonparametric estimation of 8 for generalized Leh-
mann’s alternative models A(F;8) is possible, even ip the one-sample problem, when
symmetry of the basic distribution function ¥ about zero, F(z) = 1 - F(—=), is
assumed. Simultaneous nonparametric estimators of g and 6 for the model A(F (- —
#); ) are also provided under the symmetry of F. The asymptotic normality of these
estimators is proved under certain regularity conditions.



i. Introduction

Tn this paper we consider the following model: the observations X1, X2,...
X, are independent and identically distributed (ii.d.) with a distribution func-
tion (A1) Gla;p,0) = h(F(x — p);0), where h(t; 0) is a known transformation
on (0,1) which satisfies the conditions (1) and (2) below, and F is an unknown
d.f. Then the observations are said to follow a distribution called Lehmann’s
alternative (Lehmann {1953)). The Lehmann’s alternative is in general a trans-
formation on the space of distributions, but in our model we parametrize this

transformation and define as follows (Miura {1985)).



Definition. Let ® be an interval in the real line. A function h(t;6) for ¢ € (0,1)
and & € © which satisfies the following (1) and (2} is called the generalized
Lehmann’s alternative model;

(1) 2(0;8) = 0 and A{1;8) = 1 for any § € ©. h(t;8) is a strictly monotone
function of &.

(2) There exists 0* € © such that h{t;8*) = ¢ for t € (0,1). And for § > &,
h(t;8) < h(t;8') for all £ (or < may be reversed for all  and & > #'). |

‘We shall also call h{F(-);8) a generalized Lehmann’s alternative model. In
terms of random variables, the observations following a generalized Lehmann’s



alternative model A(F;d) are somehow the transformed values of the basic rapn-
dom variables whose d.f. is F. The d.f F is treated as a nuisance parameter
and we consider the problems of estimating 6 when g is known to be zero and of

estimating 6 and p simultaneously. This model inchudes many useful models as
follows.

In the one-sample problem, it is not possible to estimate § for generalized
Lehmann’s alternative models k(F;6), when F is unknown and no restrictions

are made on the shape of F. The parameter @ is not even identifiable in that
case. Throughout this paper we assume:

£ is continuous and F(z) = 1 — F{-=z). (1.1)

Also note that (2) in the definition of the generalized Lehmann’s alternative
model implies

h(t; 0) + h(1 ~t;8) #1 for t € (0,1) and ¢ € © — {#*}. (1.2)

~ - a4

Under (1.1) and (1.2), ¢ is identifiable and can be esut%xx_lz}.tgdt B



in Section 2, X;’s are i.i.d. with d.f. G(=;8) = h(F(z);d) and we introduce
a statistic based on ranks of transformed X;’s. We then define our estimator of 4
by a generalization of the method of Hodges and Lehmann (1963), and prove its
asymptotic normality under certain mild regularity conditions. In Section 3, the
observations X;’s are i.i.d. with d.f. G(z;p,8) = h(F(z - p);9) and simultaneous
nonparametric estimators for # and ¢ are defined using rank statistics similar to
the one in Section 2. We show joint asymptotic normality of the simultaneous -
estimators assuming some conditions in addition to those for the case of Section
2. See also Miura (1987) for the principle of these estimation procedures.



2. Estimation of 8

In this section, Xy, Xo,..., X, are i.i.d. with d.f. G(z) = h(F(z);8,) and 8,
is to be estimated.
Let G,(-) be the empirical distribution function of X;’s, that is,

A >
Gn(z) =n ' ZI[X,**_Cz]&
1=1

where I is an indicator function of 2 set A and let G, (z} be a linearized version
of Gpn: let X(gy < X@) < «++ < X(n) be the order statistics of X;’s and define

@n(m) by
~ ATH iX(i+1} — (i + I)X(,)
Gnlx) = .
(@) (n + I{ X1y — X))

T € [X(,}, X{t’—l-l)] 5

for 2 = 0,1,...,n with X4 = X3y — 1/n and X{,;,H) = X(ny + 1/n.. For i =

1,2,...,7, let ‘
D o= T
z() 267 ((77))

R (r) = the rank of | Z;(r)| among {|Z;(r)|: j =1,2,.. Ly}

and define



Note that G;2(h(-;60)) may be viewed as an estimator of F~! and so Zi(60)’s
can be regarded as an approximation of the ordered sample from F. Also, by

virtue of the smoothness of Gy, we can cope with the problem of iies'amnng the
Zi(r)’s. Let J() be a.score function which is monotone increasing in ¢ € (0,1)
and assume that J(t) has a continuous derivative J'(¢) and satisfies fE:,L J(t)dt = 0.
Then the statistic we shall use for inference concerning 4 is

5'“("')%?1? 3 J((1+"%&1)-)/2)+i- 3 J((l—%)/z). (2.1)

3:Z;(r)>0 ©Z;(r)<0



If J is symmetric about -% in the sense that J(t) = —J(1 —¢), 0 < ¢ < 1, then it
is easy to see that

_ L& BN
$,0) = 5 3 (S5 sz,
where J*(t) = J((1+%)/2), 0 < t < 1. So that the statistic Sp(r) may be
regarded as a signed linear rank statistic. The point is that under (1.1) and (1.2)
Z1(r), Z2(7), - . ., Zy(r) ate thought of as a sample from a symmetric distribution
only when r = g, and S,(r) gives the strongest support to » = fy when it is
closest to zero. This makes it possible to estimate # even in the one-samiple
situation. Then our estimator EL of fp is defined as the value of » which makes
|Sn(7)| closest to zero. Such » exists since S, (r} is nonincreasing in r.

1Irﬂ Fal-% 4 1m:+n



Graph of the statistics

as a function of r






Section 2.

: (2-1). Asymptotics (mathematics).
Outline of the proof for one sample problem.
: (2-2). Two sample problem.

Setting and statistics.

: (2-3). Remark.

Associated sequence of r.v.'s



asymptotics

mathematics



Next we shall state the assumptions which are necessary to prove the asymp-

ttrttic normality of our estimator. Assume that At #) is continuously differentiable
with respect to £ and ¢ and let

a
M0 & Zhi0),  ha0)2 Zago)

Let u(t) = t(1 — t). Assume, uniformly in 6 in a neighborhood of 6y,

(A1) 7] < Ml o)) T, for >0
1

&2 o) =M<

(A3 hat;6)] < M[uasio0))] """, gor o' >0

. . . A
where M is a universal constant. We require p = § — § > 0. Further, assume

(A.4) Ry (t;8) ~ hy(t; 8g) uniformly in ¢ € (0,1) as 8 — 8, (k =1,2).



We can write

5.(r) = | mJ(l"*"H“*“(m))dLn,f(m) +f ‘; e _Hn,r(“‘m))dLn,r(ﬂ’):

2 2
where
U, (t) 2 i(the number of {z : n—:- ] < t}), t € (0,1),
A 1 :
Lug(z) = ;(the number of {i: Z;(r} < m})
= un(h"HGala)ir), sER,
1
Hy - (z) 2 m(the number of {z: |Z;(r)] < a:}), z € (0,00).

We set H(z) & F(z) — F(—z) for z € (0, o).



For a function g on I (I = [0,1] or R), define ||g]l = supscsl9(}|- By
Skorohod’s representation theorem, there exists a probability space on which a
sequence of i.i.d. uniform (0,1) random variables Uy;’s and a Brownian bridge U

are defined and satisfy

[Vn -Vl 50, n—oo, 2.4
where
Tat) £ n ' Iy,cp t€(0,1),
i=1
Uty & VATa()-t), te(0,1).

Using these U,;’s, we shall represent the observation as X; = G~ {U,;) for i =

1,2,...,n, which is called the special construction following Shorack and Wellner

(1986). We shall then obtain convergence in probability of the estimator, but on

the original probability space we can claim convergence in distribution only.
The following lemma is needed.



Lemma 2.1. Letr = 8+ b/\/n. Then for the special construction X; =
G~1(Uyn;) and any given positive number B, we have, uniformly in x and |b} < B,

ValLnn(z) — F(z)] 2% A(F(z)), n— oo, (2.5)
where

h1(t; 6o) k(% 60)°
provided (A.2)-{A.4)} hold.



Now set

i

a2(8) f o?(t)dh(t; ) — [ fo a(t)dh(t;ﬁ)]z

+ f 2(¢)dh(t; 0) - [ / ()dh(t;ﬂ)r
+2[ L o(8)a(£)dh(t; 8) — fn ' a(t)dh(t;0) fﬂ 1&(t)dh(t;9)],'

and
7(8) = ful ho(t; O)d{a(t) + Er(t)-},
where o(t) and &(t) are defined by

da(t)  J'(2) 4 da®) _J'(1 =)
dt R0 0 Tdt ma(0)

respectively.



Theorem 2.1. Assume that h(t; 8) is continuously differentiable with respect to
t and 0 and T(0) > 0. Also let the assumptions (1.1), (A.1)-(A.4) hold. Then,

as n — 00, we have

A 2(8
ﬁ(ﬂﬂ -~ 50) N N({], %)

Proof. Nuﬁng that fnl J(t)dt =0, v/nS.(r) can be expressed as

Ja i/i;mj(l +H;,f(m))dﬂw(m) T/OWJ(IJFf(m))dF(m)]

+ 7 ' f ’ J(l _H“=‘"(_m))dLn,r(m) - / U J(l“fg(—m) )d.F(m)] (2.9)

[ — ey 2 — 5

Then the first term in (2.9) is decomposed to 37 ; B, + o5 C;n where



Then the first term in (2.9) is decﬂmpnsed to 3371 Bin + o0 Cin where

Bin & [1(557) o vatka - ),

By, 2 E]\/E(Hn,,.—H)J’(IEH)dF

Cin - = fJ(1+H 'f)d{\/?;(Lnr Knr)}

Co 2 3 [vi( m.-—H)J’(¥)d(Kn,T—F),

o & o8 ) o) Y- (s,

Note that (1+H)/2 = F due to the symmetry of F', which we shall use repeatedly
without mention. . .

We now show that Ei:l B;, converges in probability to a normal random
variable. By (A.1}-(A.3) and the mean value theorem,



Consequently

By, -2 — + Ut b)) dJ(t) +5b / " halts BG)dJ(t)-i—}\(l/Z),

1 hy{2;60) ha(2; 80)
where
02 DR o
Concerning By, note that Lemma 2.1 implies
Vi Hap(z) — H(z)) 2% A(F(z)) — AL - F(=)), (2.12)

uniformly in ¢ > 0 and |b] < B. Then, using argument as in By,, it is easy to
see from (2.2), (2.12) and (A.1)-(A4) that

(R(t;80)) U(R(1—t;60))
f [ il 00) ~ hi(l—%00) ]‘” (®)

hz(t ﬂg) hg(l — i;gn]
- [hl(t 9)  ha(l =% eu)]‘”(”'

iy



Thus

2 "
P 1.1 [U(R(t;60)) | U(R(L —1;60))

Bym — —= + 2 ]dJ t
2 Bin 2 )y | 7alts0) * ha(—t60) 1@
b 1 'hz(i;90)+h2(1**;9u)
3 )y | hatts00) * B t00)

]dJ(t) +A(1/2). (213)

Next we show that E?ﬂ Cin 25 0. For Cin, note that H,, < n/(n+1).

—



Tt can be seen in the similar way that the second ferm in (2.9) converges in
probability to

1 5 [U(R%) | U —100))
20 | RafZ60) + hi(1l--%;6p) ]dJ(t)

2
b 2 -hg(t; 30) hg(]. — 15 ﬂu)
o /ﬂ . ]dJ(t) = A(1/2).

hi(E;80)  R1(l —1;60)

Noting that |

- [ ha(t;80) | he(l —~1%;60) B |
-/t; [hl(ﬁ; fo) + ha(1 — t;ﬂn)] dJ(t) = 7{bo),

we obtain asymptotic linearity: for any B > 0
1

1
VS (r) + ET - 551‘(90)

SUup

Fs0, (2.14)
b|<B |



where

Uh(;60)) . U (h(1 1 90))
T= / [ hy(t; 00) T Tha(l— £;00) ]dj(t)'

Now let ¢ > 0 be a given number small enough to satisfy € < 7(6p)/2. Take

B¢ > 1 so large that (0)
Be'r 9[] } £ -
P{]TI > — <3

By asymptotic hneanty (2.14), there exists an N, such that for all n > N,

P ¢ sup > €9 <
tb| < Be

b-::lm

JnSa(r) + -—T - -T(e{,)




Thus for all n > N,, any value by, of b which minimizes |/nSa(r)] = |VnSx(60 +
b/ /n)| lies in {—Be, Be] and it follows that

bn — T/7(80)| < €/7(00)

with probability exceeding 1—e (note that T'/7(fp) minimizes | ~T/2+br(60)/2]).
Noting that +/n(6, — fo) is a value of b which minimizes | /1S (r)|, we obtain

- P T
\/'E(Bn - 30) 7 T(ﬂu) .

An easy calculation shows that the random variable on the right-hand side has
a normal distribution -V (0, c2(80)/7%{00)). Thus, as remarked above, we obtain
the desired convergence in distribution of our estimator.




Remark. If J(t) = —J(1 —t), then a(t) = &(%), so that the asymptotic variance
becomes simpler; in this case 02(8) and 7(#) are given by

o2(8) = fu " 2(t)dh(t; ) — [ /ﬂ " a(t)dh(; 9)] :

w(0)= [ halt; et



3. Simultaneous Estimation of x and ¢

In this section, let Xy, X3,...,Xy beiid. with d.f. Gz) = (F(z— uo); fa).
The parameters g and g are both unknown and are to be estimated simultane-

ously.
Let Z;(r) be as in Section 2 and define

R} (r,q) = (the number of {j : |Z;{r) —q| £ lZ.,,(T) - q|})



In this section assume that F' has a bounded continuous density f. Let Ji(-) and
J2(-} be the score function used for estimation of # and p respectively, Ji(-) and
J2(-) satisfy the conditions for the score functions in Section 2. In addition, J; (-)
and Ja(-) are assumed different enough to satisfy

1 Tho(t;00) , ha(l—t;6;)
L o) * =] A f $P a2

' [Rati60) | ho(l—t;6p)
>/i‘] R (8 Bo) + hi(1 —t;80) ]d'fz f f(F t))sz(t)

(3.1)




The rank statistics for the simultaneous inference of 4 and 8 are defined as follows:

ooty T o050 ) 5 n (052 )

i:Z;(r)>q
(3.2)
and
+
Sonlr,q) 2 1 S 7 ((1 R; (r,.ﬂ.f))/z)_l__ 7 (( R} (r, 9))/2).
n i:Z;(7)>q .2 (r){q n+1
(3.3)

e . . ~ - -



0.3}
Our estimators of iz and @ are derived from the smmlta.nenus equations S1,(r,q) ~
0 and Son(7, ¢) & 0. Define

2 {(*r,q) : g [Skn (s 4)] = mm}

D, C ® x R is not empty for all Xy, X»,...,X, since Sen{r,q), as a function of
r and ¢ with fixed X1,X>,...,X,,, takes on a finite number of different values.
Skn(7,9), (k = 1,2) are nonincreasing in each coordinate r and g separately, but
it does not ensure the convexity of D,,; which may be used to determine the
estimators umquely Our estimator (Hm n) is thus defined to be any point of
Dy. Since (Hﬂ, fin} may not be unique, there may be some arbitrariness in this
definition. But, as will turn out in Theorem 3.2 below, all points in D, are
asymptotically equivalent; so, for large =, it will not matter much how (E?m fin)
chosen.



Define, for z > 0,

1

A
Hﬂ,r,g (:'ﬂ') = ﬂ_-l-l

(the number of {i: |Z;(r) — ¢| < :c})
Then we caﬁ.write

RE(r,q) = (n+ 1) Hy (1 Zi(r) — gf),

so that, for k = 1,2, Sgn(r,q) can be written as

Sinr0) = [ Jk(”Hﬂﬂ‘ﬂ(m‘Q))dLn,f(m)

N g 7 (1 - Hzn,r,qé_(m - 9))),;5_[,,1’,.(&:).

-0




To investigate the asymptotic behavior of Si,, we assume, in addition to (A.1)
with J replaced by Jj and (A.2)-(A.4),

(A.5) |TLE)] < M@, >0

We also introduce the following notation: let v = g + b1/+/n, ¢ = po + ba//1
and

FAY ! Ty
Sa(r,@) £ (S1alr,0), Sonlry )}, b= (b1, D)
Fuarthermore, for £ = 1,2

a fLyURES) |, URL 5001,
Tk"./:; { h1(%; o) - hi(l — t;8q) }Mk(t)’

and set T' 2 (Ty,T3) . Let D = [dg;] denote a 2 X 2 matrix, where

A& Y {ha(t;00) , h2(1 —t;60)

drp1 = fu{hl(t;f?u)+hl(l_t;gn)}dtfk(t),
1 .

de 2 -2 fﬂ FETI@D)ATE) (B=1,2).



Note that D is nonsingular because of (3.1). Then we have the following asymp-
totic linearity result.

Theorem 3.1. Suppose that F has a bounded continuous density f and thet
(A.1) with J replaced by Jyi and (A.2)-(A.5) all hold. Then

1 1
max sup |VnSen(r,q) + 7Tk — 5{drib1 + drabe) £, 0, n— oo, (3.4)
k=1,2 b |<B 2 2

for each 0 < B < 0.

Using matrix notation, express the relation (3.4) as

1 1
sup [v/nSa(r,q) + T_EDB 2,0, n— oo. (3.5)

|bx| < B 2



Proof of Theorem 3.1. Without loss of generality assnme pp = 0. Note first
that, as n — o0,

| Hung(z) ~ HGz)|| 25 70, = >0,
”Lﬂ,f(m) —-F(ﬂ:)” == 0,

and for the special construction X; = G~1(U,;),

Vi|Los(@) - Flz)] =5 A(F(=)),
VilHapgle) - H@)] 25 A(F@) - A= F), @>0,

uniformly in z and |b;| < B, where A(%) is given by (2.6). Making use of
' &0
f T (1 + H(m))dF(m) =0,

we have



Sinlrq) = qu Jk(l”"H“"'f(m_'g))dLn,,(m)—f:o Jk(l +f(m))dF(m)]
[[a( Hnsa(—(z = q))) AL (2)
-~ f_ ; T (1 — ﬁ; (_“’))dF(m)] . (3.6)




We decompose the first term of the right- hand side of (3.6) to 2 —1 Bin +
Ei:l C‘I'ﬂ-! where

B 2 [ Jk(1+H§”“Q))d{ﬁ(Kn,r(w) - P},

5 [ Va(Hapale = 0 - Ho - ) 7L EE D) gy,

x/_/[ (1+H(m— )) —Jk(1_+2H(m))

ka(1+Hnrq 9))d{¢‘(1}n,. M(m))},

Lt )5 (D)l -0

\/E/ [Jk(l""Hﬂ,rz,q(m“‘Q)) _Jk(l-i*H(m"q))

[

iC>

dF (),

it

|1

[

2
_%(Hﬂ,,,q(m—qj —H(m—q))Jk(1+H(m )] dK, o ().

Noting that the proof of Theorem 2.1 is valid uniformly in all continuous and
symmetric F, one can use the same argument as in the proof of Theorem 2.1 to
show the convergence of By, and Bo, and the asymptotic negligibility of 3, Cin.



Concerning Bg,, we have

S UL EETLC P

— b [ BFE)@)FE) = -t [ sEanan,

since f is bounded and continuous and (A.5) holds. This is verified by the

dominated convergence theorem.
We can prove the convergence of the second term of the right-hand side of
(3.6) quite similarly. We therefore obtain

1 1 .
V1S (7,9) —5 Tk F E(dklbl + dpabs), n - oo,

for & = 1,2. Compactuess of [—B, B] and monotonicity of Si, establishes the
claimed uniformity in |bz| < B for each 0 < B < 0.



Once asymptotic linearity holds, one can see that each point of D), has the
same distribution as in Jureékovd (1971). Let ¥ denote the covariance matrix of
T. Then its k,! th entry oz is given by

Okl = fn 1 ar(t)ay(t)dh(t; 6p) — fu 1 e (t)dh(2; 60g) ‘/.0 1 o {£)dh(t; Bo)
1

+ fﬂ 1 ak(t)a;(t)&h(t; 8g) — fn 1 ax(t)dh(t; bo) fu ai(t)dh(t; fo)
1 1 1 '
+ fu ok (£) 31 (£)dB{t; o) — fo a(t)dh(t; 6o) fo a(t)dh(t; 6p)

+ fo lc‘rk(t)&;(t)dh(t;lﬂg)— fﬂ 1 ax(t)dh(t; 6o) fﬂ 1 ay(t)dh(t; ba),

for k,{ = 1,2, where o4(t) and Ei;;(t) are defined by

doy(t) _ Ji(?) ond da(t) _ JL(1 —¢)
dt hi(t; 8) dt hi(t; 6)

respectively. Then dy; becomes [ ha(t; fo)d{aw(t) + ax(t)} for k =1,2.




Theorem 3.2. Suppose that all the conditions of Theorem 3.1 are satisfied. Then
each point of D, is asymptotically normal N(0,D~12(D~1)), that is,

\/ﬁ( ?n."' o ) _i} N(O,D—IE(D—I)I),
Fn = K0

S asn — co,



Proof of this theorem proceeds in a fashion quite similar to the last part of
the proof of Theorem 2.1 and is not given here.



Remark 38.1. The above results are also simplified in the case that J{i) =
—J(1 —¢). The k,1 th entry of the matrix D becomes, for £ =1,2,

1
dry = 2 fm ha(t; 80)dar(t).

Also we get

' a,,;=4[ j; ' () en(8)dhit; ) — fﬂ " () dh(t; 60) fn 1 mg(t)dh(t;ﬂu)].

Further, letting A denote a 2 X 2 matrix with &, th entry Az given by

A & f FEHD)ATE), Mzl f FFL ) ),

a2 [ haftsdden(t), a2 [ s bo)den (s,
and

v 2 [ haltsbo)da®) [ FE N0 - [ haltsbo)dan@) [ £ )00,

we have A
\/-E( O — 0o ) L N(o,lgnm’),
Hn — KO Y



Remark 3.2. The efficient scores for estimation are not yvet known. But for
testing, the locally most powerful rank test may be given with the following score
functions:

7y H9(z; 11, 6) _ haa(h71(5:6);6)
( T3 Hs 9) a=G—1(1;u,8) hl(h_l(t; ﬂ),ﬂ) ’
where
| haa(t; ) 2 il ——h(t;6).
- 5t58

This is mdependent of x and f, but depends on #. For testing, # may be the
value for the null hypothesis.

5 2 9(z; 1,6)
g(m'ﬂzﬂ) z=C— 1(#,;;3)
_hu(hTMH0): ) F(FTIRTMG ) FERTME)
hl(h" (¢;8); ) FFP-Y 1 0)))
where 52 |
b (t; 8) 2 5 h(t;).

This is independent of g, but depends on f and #.



Two sample problem



1. Introduction

We consider the two sample problem where Xi,..., X;» and Y,..., ¥x
are independent random samples from populations with continuous distri-
bution functions F and G, respectively, Many of the models in which rank
(partial, marginal) likelihood methods are useful can be put in the form

(LD F()=D(H(®),0), G(1)=D(H(),0),

where H(f) is an unknown continuous distribution function, D(x,8) is a
known continuous distribution function on (0, 1), and &, and &; are in some
parameter set ©, |



For inference based on rank likelihood, the above model is equivalent
to the model obtained by using the distributions of U: = F(X) = D(H(X)), 6))
and ¥; = F(Y)) = D(H(Y)), ). These distributions are '

Fy=u, ue(0,1), G@=DD" (©80)0), ve1).

In the case where {D(u, 0): 8 ¢ @} is a group under composition satisfying
D, 1) = u, DD (u, 61), B2) = D(u, 8), 0 = 62/ 61, we can write

(1.2) Fwy=u, ue(,1), G =D(@#6, ve(®]).

From this point on we assume that (1.2) is satisfied. The distribution
function Fis treated as a nuisance parameter and we consider the problem
of estimating #. This model goes back to Lehmann (1953), and includes the
following models that have imporiant applications in survival analysis,
reliability, and other areas.



Example 1.1. (Proportional hazard model) 1f F and G have pro-
portional hazards, then D(v, ) =1—[1— v]'"?, 8> 0. Lehmann (1953) and
Savage (1956) considered testing in this model. Cox (1972, 1975) developed
estimation procedures in a much more general regression problem with
censorcd data.

Example 1.2. (Proportional odds model) For any continuous dis-
tribution H the odds rate is defined by ry = H/(1 — H). If F and G have
proportional odds rates, in the sense that rg(f) = 87 re(t), then D{,8) =
v[(1 — b)d + v]". This model has been considered by Ferguson (1967) and
Bickel (1986) in the two-sample case and in more general regression models
by Bennett (1983) and Pettitt (1984), among others.



3. Rank-inversion estimates

In this section, we introduce rank-inversion estimates based on the
ideas of Hodges-Lehmann (1963). Again, we start by assuming that F is
known and let U, ¥; and D(u,8) be as in Section 2. In particular, we
assume that D{i, &) is monotone decreasing in §. Note that U,..., U,
D", 8),..., D(V,, 8) all have the same distribution when @ = &y, where 9 is
the true value of the parameter. Let R:i{(f) denote the rank of U; among
Uiyerey Umy DV, O),..., D(V,, §), and let

RO

—_— _I S
Tw(f) = m E’l‘f”(N+1

denote a linear rank function with monotone increasing score function Jy.
For F knnwn, the Hodges-IL.ehmann estimate of & is obtained by solving

Tn(8) = f J(w)du for 8, where J(u) is the limit of Jy(w). Without loss of

generality, we assume f J(w)du =10,



Suppose now that Fis unknown. Let Xy < - < Xy be the vector of
order statistics of X/’s. Let F be defined by

i+ i Xy — (P 4+ DX
(m+ D(Xysny — Xew)

Flu) =

for Xip < u= Xysn, i=1,...,m — 1. Thus on the interval [ X1, Xim], Fis a
linearized version of the right-continuous distribution function mF,/
(m + 1), where Fn(u) =m' # {i: X; < u}. Further, let Y and Yy, be the
first and the last order statistics of the ¥;’s. If ¥y < Xy or Yip > Xim, then
we extend F to the interval [min (Xu), Yi1y), max (Xum, Yeg)] linearly with
F(Ym)=1}/(N+ I)if Yy < Xqy and F(Y[n})f NN+ 1D iff{n] > Xtm).



_Further, let Ri(f) be the rank of F(X) among F(Xi),..., F(Xn),
D(F(X)), 8),..., D(F(Y,), 8). Let 8x be any “solution” to

Ri(6) \ _
N+1)“0'

Tn(6) = m_lg‘.‘ Ju (

More precisely, let ?R be any point in [8%, 85*] where 8% = sup {8 Tw(6) < 0}
and 6g"* = inf {§: Tw(6) > 0}. Similar estimates have also been considered
by Doksum and Nabeya (1984) and Miura (1985).



Example 3.1. Assuming Fis known, the Hodges-Lehmann type rank
estimate based on J(u) = 2u — 1 is asymptotically optimal for the propor-
tional odds model, Let L(x) = 1/[1 + ] be the logistic distribution func-
tion and note that if we set W;= L (F(X) and Z;= L '(F(Y}), then W;
and Z; follow a logistic shift model (W;~ L(w),Z;~ L(z—log )} with
parameter log 8. Since the ranks are invariant under the increasing trans-
formation L', it follows that the Hodges-Lehmann cstimate of & is

i = exp {megian (Zi— Wi} .

The corresponding Jz, which is appropriate when F is unknown, is

O = exp (median (L™ (F(Y)) - L™ (F(X)}



We return to the general case and show the asymptotic normality of
/N (8r — 6b). From (1.2), we have

(3.1) DD, 9),8)= D(u,5]0), D(u,1)=u.

| Let
. 9 1 . '
D@,0) =~ D(w,0) 1= J, 7@ D, Dau
7(0) = n?]fﬂl JAw)du + o' [ful o’ (1) du — (fula(u)du )1 ] ,

where « is defined by

da(iu)

= = (D, (w0 .




Further, let
Glwy=n"#[j: DF (T, 0 < u] = GF ' D, 67,
Hi(w) = {mFaF ) + nGY)} (N + 1),
G’(u) = D(D (4, 8), 86} = D(1,60/6)
(by (3.1)) and H “(w) = mou + G’ (u). In terms of these functions, we have

Ri(0)
N+1

Tw(0) = m™ % Iy ( ) = [In(HE(F) dFm = [ IN(HE) dFF



Assume
B.1) riv= VN [{In(HE) - JHEdFuF™ > 0 as N — o> uniformly

for # in a neighbourhood of 6.
. Moreover,
(B.2) Jis a differentiable function with bounded continuous deriva-

tive J, and 0 < [ (@) du < oo .
Finally, we assume that the limits 750 = }}ﬂ (m|N)and n, = }}m (n/ N) exist

and are strictly between 0 and 1.



THEOREM 3.1. If D(u,0) is decreasing in 0, and if the preceeding
conditions hold, then \/ﬁ (g — &) has asymptotically a normal distribu-
tion with mean zero and variance 857 (6o) 1.

PROOF. As in the case of Hodges-Lehmann (1963), 8%, 8z* and any
point between them, such as fx, will have the same asymptotic distribution.
Further,

PN (B%16:— D)<ty = PN Tn(9)>0),

where & = (1 + ¢/ \/N_). We have
VN Tw(8) = /N [ In( HA @) dF ()

= /N I dLFnF W) ~ u] + N LI H ) ~ T ()] du
+ N @) - J@)]du+ rv=h+ L+ I+ .



Remark.

Asymptotics.

Weak convergence of Empirical distribution
of associated sequence of rv’s has been
proved By Louhichi(2000) and
Yu(1993),Shao&Yu(1996).

lid asymptotics could be extended to these
weakly dependent cases.



Appendix 1.

Special construction where every-
path argument is allowed.

Pyke and Shorack (1968)



The Annals of Malhemalical Siatistics
1968, Yol. 32, No. 3, 755-171

WEAK CONVERGENCE OF A TWO-SAMPLE EMPIRICAL PROCESS
AND A NEW APPROACH TO CHERNOFF-SAVAGE THEOREMS'

By RoNaLp Pyrr anp GaAreN R. SHORACK |
Unaversity of Washington

0. Summary. An empirical stochastic process for two-sample problems is
defined and its weak convergence studied. The results are based upon an identity
which relates the two-sample empirical process to the more usual one-sample
empirical process. Based on this identity a relatively simple proof of a Chernoff-
Savage theorem is obtained. The ¢-sample analogues of these results are also in-
cluded.



2. The 1-sample empirical process. For m = 0 let {Wa(t): 0 = ¢t £ 1} denote
stochastic processes on a probability space (@, %, P) whose sample functions are
points in some metric space (I, §). :

DerFmviTION 2.1. We write W, — 1 W relative to (9, 8) if lim,,n B¢ (W,a)] =
E[y(W,)] for all bounded real functionals ¢ defined on 917 which are continuous
in the é-metric and are such that ¢(W,), m = 0, are measurable with respect to |
9. Such convergence is called convergence in law or weak convergence. (If the
W.. process and Wy-process are measurable with respect to the Borel sets of
(M, §), so that their image laws on 9 are well defined, then the above definition

is equivalent to the usual definition of weak convergence as given in Prokhorov
(1956) for example.)



Suppose N = D, the set of all right continuous real valued functions on [0, 1]
having only jump discontinuities. In this case two possible metrics are & = p, the
uniform metriec defined by

(2.1) o(f, g) = supose<1 |f(2) — g(t)],

and 6 = d, the Prokhorov metric on D as defined by Prokhorov (1956). Prok- -
horov showed that (D, d) is a complete separable metric space and that U, — . U
relative to (D, d). Actually, since all jumps of the U,,-process equal m_*, it, is
possible to show that U,, —. U, relative to the stronger uniform topology of the
non-separable metric space (D, p). We will obtain this result as Lemma 2.1. (It
should be pointed out that Dudley ' (1966) gives a definition of weak convergence
for non-separable spaces which is more general than Definition 2.1 above in that
his use of upper and lower integrals enables him to place a less restrictive assump-
tion of measurability upon the funection . Also, the statement “U,, —. U, on
(D, p) in the sense of Prokhorov’s definition” is false; see Chibisov (1965) for a
statement of the measurability difficulties.)



Since U, —1 Uy relative to (D, d) and (D, d) is a complete separable metric
space it is possible, (see item 3.1.1 of Skorokhod (1956)), to construct processes
{U.(1):0 < ¢ <1}, m = 0, with sample functions in D and having thesamefinite
dimensional df’s as {U,(¢): 0 < ¢ £ 1}, m = 0, but which in addition satisfy
AU, Up) —04. 0. Letus make anindependent construction for the V »-processes
so that

(22) d(ﬁm [ (70) —a.s. 0: d(vn » vﬂ) —a.s. 0

where all processes are defined on a single probability space (&, ¥, P). This is the
probability space we shall work on in what follows. Note that if we set
F,. = mU.(F) + F, then ¥, is a.s. a df having exactly m discontinuities each of
magnitude m ™. (We shall henceforth drop the symbol ~ from the notation.)

Based on the above construction, we shall prove a series of lemmas about the
U n-processes.

WarNNG. The results obtained below which involve convergence stronger
than convergence in law may apply only to the specially constructed processes.
Only the implied convergence in law should be assumed to hold for the original
processes unless further checking is done.



Appendix 2.

: Associated sequence of random
variables.

: Convergence of empirical distribution

: Sana Louhichi (2000) and
H.Yu(1993),Q.M.Shao & H.Yu(1996)
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1. INTRODUCTION, NOTATIONS AND PREVIOUS RESULTS

Let (X,)nez be a stationary sequence of random variables (r.v’s) on a
probability space (2, F, ). Let F be the common distribution function
of (X,)nez. The empirical distribution function F, of Xy,..., X, 1s
defined as:

1

F(x):=F(x,0)== ) lywg:o *€R
I<ign
The empirical process G, based on the observations X;,..., X, is
defined by:
Gp(x) := Gp(x, w) = /0 [F(x, ) — F(x)]. (1)

Let D[—o0, +00] be the space of cadlag functions on [—o0, +00] having
finite limits at Foo. Suppose that D[—o0, +00] is equipped with the
Skorohod topology. The usual Empirical Central Limit Theorem (ECLT)
gives conditions under which the empirical process {G,(x), x € R}
converges in distribution, as a random element of D[—occ, +00], to a
Gaussian process G with zero mean and covariance



Cov(G(x), G(»)) = ) _ Cov(lxogs: Lxiy)- 2)
keZ

The proof of such theorem requires two steps:

Step 1. Establish the convergence of finite-dimensional distributions,

Step 2. Establish the tightness property.

In general, it remains to prove step 2 since step 1 follows from a
suitable central limit theorem, usually well known.

For the sake of simplicity, we suppose in the sequel that the marginal
distribution function F 1s continuous on R. This restriction allows to
suppose that the marginal law is L/([0, 1]): the uniform law over [0, 1]
(cf. Billingsley [2]). '



Definition.

{X, ,n=1,2,...} is a sequence of associate random variables
If for every finite subcollection X, ..., X. and

for every pair of coordinatewise non decreasing functions
h(.)and k(.) : R" -> R,

Cov(n(Xy, ooy X ) KXoy, oo X;1)) 20,

whenever the covariance is defined.

Memo: This paper mentions that Gaussian processes are associated
If and only if their covariance function is positive,
referring a paper(Pitt(1982)).



2. MAIN RESULT AND APPLICATION

THEOREM 1.- Ler (X,),ez be a stationary associated sequence with
continuous marginal distribution F. Assume that, for n € N*,

Cov(F(Xl), F(X,))=0(n"?), forb>4, (10)

Then

Gp()— G() in D[—o0,+00],

where G,(.) is defined by (1) and G is the zero-mean Gaussian process
with covariance defined by (2).



Cov(F(X,),F(X,)) can be written as,
Cov(F(X,), F(X,)) = [[fu)f(s)Cov(ly -y Lix, )duds
<|[f[. Cov(X,,X,).

(Memo: (Y1,Yn) be independent of (X1,Xn) and
be distributed as the same as (X1,Xn).
Then, we have

Cov(F(X1),F(Xn)= % E[{F(X1)-F(Y1)HF(Xn)-F(Yn)}]

Note: F(X)=P{V < X}=E_(I{V < X}) = j 1{v < X}(v)dv
, where V follows the distribution F. Also note;
F(x)-F(y)= j [1{V < x}-1{v < y}]f(v)dv.



Representation of
Statistics as functionals of empirical distribution functions

and
Von Mises’ Type Asymptotic Theory.

Basics made Simple.

X X X,

X, ~F

An Empirical Distribution Function:

F, (X):Zinzll{xi <} -

Von Mises Functional T is a functional of F..
For a precise definition, see Filippova(1962).

T[R]1= jw (x)d[F,(x) —F(x)] : Statistics



Rough sketch for Asymptotic Theory of Statistics.
X~F

o(x:0)

0: estimand:; j o(x: 0)dF(x) =0

Observe X, 1=1,2,.... then we have F, .

0, is an estimator ; j o(x:0.)dF, (x) =0

0=[p(x:6,)dF, (- o(x: )dF(x)

~ [p(x:0,)d[F, ()-F)1+ [{o(x: 6,) - o(x : 0)}dF (x)

~ [p(x:0)d[F,()-F()1+(6, - 6) {%w(xz@)}dF(x)



Simple Example

Mean
Variance
Covariance



[ Classics: X, , 1=1,2,...n. iid with G(.). ]
: Empirical Disribution Function G (.).
Then, Estimand and Estimator are: for example, for means

: Estimand: @ such that j (X—0)dG(x) =0
. Estimator: & such that _[ (x—60)dG, (x) =0
in Fillipova(1962.Theory of Probability and its applications)

Or, "substitution principle" says,j xdG(x) can be estimated by _[ xdG, (X).

In that world, {G,(.)—G(.)} played a fundamental role for deriving
the asymptotic distribution of the estimation erros (asymptotic normality).

Remark: This can be discussed, as an extention, for the case
where observations X, , i=1,2,...n, are "weakly dependent".



Variance o*=E[(X-1)?], p=E[X].

Note : j (x-2)% f (x)dx =52,

So, [(F=F)? £ (xdx-1=0, 1=[dF.

O

Then, [{(*—%)? ~3dF(x)=0.
O
azn:j(x —u)°dF (x)

K (X o) = (X_IU)Z _ ] KkKkk
O




Homework

: (1). Discuss if

h(t:8) = t{2F(SF (1))}
satisfies the conditions (1) and (2) in slide page 7;

Definition. Let ® be an interval in the real line. A function h{t;9) for i € (0,1)
and 6 € © which satisfies the following (1) and (2} is called the generalized
L.ehmann’s alternative model;

(1) 2(0;6) = 0 and R{1;8) = 1 for any # € ©. h(t;8) is a strictly monotone
function of t.

(2) There exists §* € © such that A(t;8*) =t for ¢t € (0,1). And for § > &,
h(%;0) < h(t;8") for all ¢ {or < may be reversed for all ¢ and 8 > #').

‘We shall also call h{F(-};8) a generalized Lehmann’s alternative model. In

: (2). Have you been learning anything from my lectures?

Please describe briefly. Also, please give me an information of your

specialized field of study; such as Mathematical Statistics, Applied Statistics
and Probability Theory and etc.



