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Section 1. More on Ranks and Quantiles
: 1-1. Some more applications of Ranks and

quantiles
: 1-2. Executive Stock Options

In 1-2, | will give some comments on a recent work.

Ishii and Fujita
(2010 APFM, published online 2009)

“Valuation of a Repriceable Executive Stock Option”
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: My comment is that it is possible to use Ranks to determine a
payoff.
There, we can utilize a convenient probabilistic property of Ranks.



: 1-1. Some more applications of Ranks and
qguantiles

Brownian quantiles
: represent Level of path relating to an occupation time.

Rank

: is not a level of a path, but an occupation time.

Invariance property of Rank.

: Probability distribution of Rank does not depend on the (level
of ) initial value S, .



Designing Exotics
: (1). Determining a knock-out condition.
[0,T]. S starts from time O.
A bar at the level A.  A>0.
t = the first time S, hits the level A from below.
We should like to appreciate an early hittings (arrivals).

Then, let o=t /T, and look at M=m(1- «,[ ¢ ,T]) to define a conditional
exotic pay-off as; “ Win if M>A".
Note that if o 1s small, then 1-a is large, and M>A means S can relax.

({win a predetermined pay-off }I{M>=A}
+Hlose}(IIM<A}) I{ = <T}+lose}I{ = >T})
This will make the case of early hitting easier to win.

We can set a time deadline T, 0<T;<T or T, and
look at M on [t ,T]. Make it that one does not obtain the right to receive a
pay-off if S does not hit the level A by the time-deadline.

What can be a Pay-off ? Well, any.
Also one can use ranks R(S; :[ ¢ ,T]) to determine the pay-off.



Note : the probability distribution of m(1- « ,[ ¢ ,T]) with =t /T will be
calculated by applying the above explained mathematical results/procedure.

P{M(L—a:[7,T]) < X} =
= [ PM@-a:[r,T]) < x; given 7 =a,0 = %} f (a)da

where f_ Is the density function of z. Note that « Is stochastic.



: (2). Corridors. (Another Stochastic Corridor)

0 <T,<T,. Contract is made at time 0.

Fix a at time O.

Use m(«,[0,T,)) for the level of corridor on [T, ,T, I.
And look at

: fTo 7 1S, <m@i[0,T, Dy

This is another stochastic corridor since the level of corridor is stochastic
at time O (this remains stochastic until time T,).

This is actually comparing m(e,[0, T,l) with m(«,[ T, ,T,D.

Or, looking at the difference of the two.



The probability distribution can be derived, in a similar way,
by taking the conditional distribution function of,

1 T
1{S < mYdu
Tl—TO'[To {u }

given the value m of m(e,[0, T,)),
then, by integrating it with the density of m(«,[0, T,]) over [0,0].

1
T1 _To
Represent the random variable or the events as follows;

Note: {m(a [T, T,]) < X} ={ jTT I{S, < x3du > a}

1 T 1 T
1{S < x¥du > a <=> 1{S. ex —W. )< x¥u >«
Tl —TO J.To { u } Tl —TO J-To { T0 p(\Nu To) }

1 n
<=> T LO I{(W, =W, ) <log(x/$S; }du >«




Also for [T, T,], where O<T,<T,<T,,
Represent the random variable or the events as follows;

1 T 1 T
1{S < y¥u > B <=> 1{S. ex —W. )< vidu >
T [ Hs, <yydu>p T . 1S, expW, ~Wy,) < y}du > 5

1 (T
<=> T Ll 1{(W, -W, ) <log(y /S, }du >

Note: S; =S, exp(W; )

and S; =S, exp(W; —W; ) =S, exp(W; )exp(W; —W, )
Let W', =W, =W, , for T, <u <T, and W =W, -W, , for T, <s <T,.
: Note that W*, and W? are independent.



Then, conditionally (given W; =a,W; =Db), the probabilities for

1 T
T, LO I{(W, —W, ) <log(x/S; }du >«
1

T,-T,

T-To
<=> IO I{W*, <log(x/S,e*}du >«

1

and similarly Eﬂ I{W?, <log(y/S,e’e"}ds > S

2 1

can be obtained by reducing these to (set v=u-T, for W* and v=u-T, for W?)

r I{W*, < log(x/S,e*}dv >« and jol I{W?, <log(y/S.,e’e"}dv > B

0

ForO<T,<T, <T,<...<T, =T,
a chain of conditional distribution/calculation will come.



1 (4). «.
Use the magnitude of « and Rank to judge the
percentile level of S during a concerned (first) time
interval.

0<T,<T,.
Contract is made at time 0.
Fix o at time O.

Compare R(S,, ,[0, T,)) with «,
And then let pay-off be determined via m(a*[T,, T,]),
where a*= max {a, R(STO [0, To]) |3

Note that R(S, ,[0, T,]) >a means S;,>m(«,[0,T,].

This may be issued for investors who expect the stock
price S to go up in the second time interval [T, ,T,] as
“R(Sy, ,[0, TJ)) >a” may indicate so (?).



Homework

Describe an outline of calculation for the price of
the security in the above page.

You do not have to calculate everything, but you
can end in an integral form as a final form, such as
the ones shown in the slides ( 1%t. & 2"d week of
this lecture ). | think that is what we can do at

most for now.



Required to derive Probability Distributions of quantities and/or events
;... in order to utilize Occupationtime F(K), Brownian quantiles and ranks

: [1] m(a) minus m(B).

A difference of two quantiles; m(a) and m(B). (Fujita( 2000))

: [2] Definitions for defaults, and use it for setting a condition to win (or
lose) a right for a pay-off of Knock-In and Knock-Out-type derivatives.
: Fujita, T. and Miura, R.(2002). : Fuyjita, T. and Ishizaka, M.(2002).

[3] Joint Distributions of two a-quantiles for two time intervals. Also that
of two Ranks for two time intervals.

‘Miura,R., Fujita,T. and Kamimura,S. (2005) . Presented at QMFO05.

They have given the joint probability distribution of two a-quantiles over
the two overlapping intervals [T,,T,] and [T,,T,]l= [T,,T,]+ [T, T,)

We need more probability distribution theory to develop along with this
line.






1-2. Applications to Exotic Stock Option

Following Ishii and Fujita(2010),

| propose another design of Stock Option
in order to appreciate an effort of
managers of the company.



Stock Options and alikes

:Stock options counts the amount of payoffs in terms of a number of
shares(stocks), whereas “alikes: stock option-like” measures in other terms
such as days with multiplying by a constant (in terms of money units).

Framework of Typical Stock Options.

: Underlying variables. (stock price of the firm)
: Time intervals; [0,T,] and [T,, T,]. (Option be issued at time 0.)
: Condition for stock price level
(stock price of the firm should hit a level L at least once during [0,T,] .)

(We modify this condition to utilize our nonparametric statistics.)
:Exercise type. (if the condition is satisfied, an option holder can exercise any
time during [T,, T,].)

PAYOFF is I{ max(X, :ue[0,T,])>L}max{ St-K,0} ,where t is the time of exercise
and K is the exercise price. (This is an American-type option . But today we
talk on an European type which can be exercised only at T, for simplicity.)

We also replace T, by a stopping time t for some cases.



Using a stopping time t to start counting for Payoffs.
[0, T]land 0 S T <T

We can work on only one underlying variables , by setting

Stock price condition be : For an occupation time of the stock price to stay
above a certain level L should be long enough, say, once it hits a certain
length M then it stopps (at time t) and a new counting starts. [0, t] and [T, T].

Then, payoff can be given in a way where one can use a Rank (S_[t,T]).

Payoff at an exercise can be {1- R(S,:[t,T])}xConstant, in order to appreciate
the management for keeping the stock price high, which may imply enough
dividend being given to stock share holders.

PAYOFF function is {1- R(S,:[t,T])}xConstant where t=inf{t: F(L: [0,t] ) > M/T}.

Now, we may work on two underlying variables such as the case in Ishii and
Fujita (2010) where the second stochastic process is a Market index which
represents a level of economy (economic activities).



Ishii and Fujita
(2010 APFM, published online 2009)
“Valuation of a Repriceable Executive Stock Option”

Their idea is to appreciate an effort of management
during a period of economic recession.



Suppose that (2, F, P) is aprobability space, and that W = (W1, W3)1s a2-dimen-
sional Brownian motion process. {F;}:>0 denotes the standard Brownian filtration.
Define two stochastic processes X1 and X5 as follows: for Vi > 0,

Xi(t) = xpe—30 )+ () BENG))
Xo(t) = xze(.uz—%622)t+oz(pW1(r)+vl—pzwz(t)), ‘ 2)

where x1, X2, {41, M2, 01, and o7 are positive constants, and [p| < 1. For any ¢ > 0,
we use X1(¢) as a stock market index (e.g. S & P 500, Dow Jones Averages, FI-SE
100, TOPIX, or NK225) at time ¢, and X, (¢) as a firm’s stock price at time ¢.

We now present a repriceable executive stock option. Fix M7 € (0, x1] and M €
(0, x2], and let T be a stopping time defined by

T = inf{t > 0|X1(f) < My, X2() < Mz} 3)



Fix T > 0, and let us define an Fr-measurable random variable
Y =max(X3(T) — K, 0)1{r> 1} + max(X2(T) — X2(7), 01z <1y, 4)

where K is a positive constant, and 14 is an indicator function of A € JF. The random
variable Y represents the payoff of the executive stock option. We call T the expiration
day. K is referred to as an exercise price which is determined at time 0, i.e. the time of
stock option issue. We use X2(7) as the new exercise price. The new exercise price is
reset to the market price of the firm’s share at the repricing date. So, the exercise price
may be marked down only one time, if the firm’s stock price falls below the boundary
M3 in a down market before the expiration day 7.



Comments 1 : Using Brownian quantiles and Ranks to
make a device on Design of stopping time.

Ishii and Fujita use hitting times of X, and X, to define a stopping time. It is
fine.

Here, we can define a stopping time from other viewpoints with Ranks and
Brownian quantiles.
: [1] First t such that X,(t)< M, be t.
Then, use {Rank of X,(t) in time interval [t, T]}) and give some care of
max{(X,(t)- K),0}.
Note that a probability distribution of rank does not depend on the level of
X,(t), and probability distribution of (X,(t)- K) can be obtained from joint
distribution of (X,(t), X,(t)) under the condition of X,(t)=M, and probability
distribution of Tt which is a well known hitting time of a Brownian motion.
PAYOFF function is {1- R(X, (t ):[t,T])}xConstant where t=inf{t: X, (t)> M}.
Some care may be possible, for example, add max{(X,(t)- K),0} to make
max{(X,(t)- K),0}+max{X, (T)-X,(t),0} or give
max{(X,(t)- K),0} + [multiple of {1-Rank of X,(t)}]



Define a stopping time based on an
occupation time under a prefixed level.

r = inf{t jot I{X(u)<M,}du>L}.
We use only X, here (X = X,).

Then, define a Payoff as in the above:
max{(X,(t)- K),0}+max{X, (T)—X,(t),0} or give

max{(X,(t)- K),0} + [multiple of {1-Rank of X,(t)}]

A recent research has proved that a probability density function of a stopping
time is available for Ornstein-Uhlenbech process as well. So we can used
Ornstein-Uhlenbech process in this framework, for defining a stopping time
on an interest rate.



r = inf{t: j; I{X(u)<M,}du>L}

P{J, HX()<M,}du>L} =1~ P{[ I{X(u)<M,}du<L}
=1-P{V(t) <L} where
V(t)= jot I{X(u)<M,}du is an occupation time process.

V (t) Is nondecreasing as a function of t.
Note that P{r<t}=P{V(t) < L}.



In general,

T can be any as long as its probability distribution is known.
As long as the distribution of stopping time t is known,
the probability distribution of
{Rank of X,(t) in time interval [x, T]})
can be given(calculated) and
it does not depend on the value of X,(t).



Comment 2: Applications .
Another situation for a second Example.
X,(t):economy of a country (say,US).
X,(t): currency exchange rate of Japanese Yen to US-dollar.
Time Interval [0,T]

Now set a boundary A that is higher than X,(0).

If X, hits the Level A (economy of the country US is recovered: Japanese Yen
tends to become weaker against US Dollar;X2 higher), start, at the time t of
hitting, a stochastic corridor
(1-{Rank of X,(t) in time interval [z, T]}) where t=inf{t:X,(t)>A}.
:{1-Rank(X,(t);[t,T1, X,)}.

Let the pay-off be {a constant Yen amount)x{1-Rank(X,(t);[t,T], X,)}.

This pay-off will save an importing company in Japan by hedging against weak

Japanese Yen.
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In order to design it for exporting Japanese company, we can replace (1-rank)
with rank in the above setting.






Section 2. Value at Risk

: Statistical models.

: Shape of distribution.

Normality, Non-Normality and Nonparametric.

. iid (time-independent) and non iid(time-dependent).
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Statistical Methodologies for the
Market Risk Measurement

RYOZO MIURA and SHINGO OUE

Graduate School of International Corporate Strategy, Hitotsubashi University, 2-1-2 Hitotsubashi,
Chivoda-ku, Tokyo 101-8439, Japan, e-mail: rmiura@ics.hit-w.ac.jp; soue@ics.Mt-u.ac.jp

Abstract. This paper classifies statistical methodologies available for the market risk measurement.
With the help of the weighted likelihood, a broad class of non-normal distributions, which are not
generally considered so far, are applied to possibly hetero-scedastic financial variables. The approach
is compared with popular procedures such as GARCH and J. P, Morgan's using daily data of 12
financial variables.



1. Introduction

In recent years quantitative risk management has become a central activity of fin-
ancial institutions. Among various risk measures, value-at-risk (VaR) is a widely
used measure of market risk in a portfolio of financial variables. Beyond the
simple i.i.d. normal model that was first proposed by BIS, present-day risk man-
. agers are strongly interested in those methodologies that are able to capture the
characteristics possibly overlooked by the stmple model.

The VaR measurement 1s to estimate the lower a% point of the probability
distribution which portfolio value increments are assumed to follow. Let V, be the
value of the portfolio at time #. Given the information available at time ¢, such as
the past values of financial variables, the probability of V,,; — V, being above the
estimated VaR needs to be (100-¢)%. A typical value of o is 1, but theoretically can
be any positive number less than 50. The essential part is to identify the statistical
model that best approximates the mechanism generating the past data.



7. Summary

This paper considers a taxonomy of statistical methodologies available for the VaR
measurement. It is summarized in the 3 by 2 matrix of {normal, non-normal, non-
parametric} x {i.i.d., time-dependent}. Resorting to weighted likelihood approach,
we show that there is no empty cell in the matrix. A broad class of non-normal
distributions as well as the empirical distribution can be modified to fit into possibly
hetero-scedastic cases.

Transformation models are introduced as flexible families of probability distri-
butions whose parameters quantify deviations from the normality.

We also show that the logic of back-testing has some problems. Back-testing is
a useful benchmark but should not be fussed over too severely.
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2. The LI.D. Normal Maodel

Let S;,;¢i = I, ..., n be the values of n assets in portfolio at time ¢. For each
factor asset, the rate of return X;, = (8,31 — Sit)/S;i 15 the building block of
the estimation as follows. The rate of return is approximately the log-ratio Y, =
log S;.s+1—log Si. Given the investment ratios a;; i =1, ..., n with Yoo a =1,
the rate of return of the portfolio is written as X, = ) _._, ; X;, and

]
Vier — Vi=V X, =V, Zaixi,r .

'
=

The starting point is then making a graph of the past returns as in Figure 1 where
the log-ratios of YEN/USD daily data are plotied against fime. Once we assume
that daily returns are independent and identically distributed (1.1.d.), the normal
probability plot such as Figure 2 is useful to identify the shape of the probability
distribution.



Under the i.i.d. normal assumption, X;,, X;,-i, ... are assumed to be i.id.
normal random variables for each i. The mean u; = E(X;,) and the covariance
o;; = Cov(X;,, X;,) are therefore time-independent. Then,

Vier — Vi = Vi Y aiXiy ~ N(Vipkp, (Viap)?), (1)

i=l

where i, = Y i iy and o7 = 3, > aia;0y;. Given the value of V,, the incre-
ment is also a normal random vanable The a % point of the portfolio increment is
easily computed as V, (i, — z40,) using the % quantile z, of the standard normal

distribution.

Given a sample X;,_;, ..., X;,—r over T time periods, the usual estimates of
the mean vector £ = (/41, ..., My) ' and the variance-covariance matrix X = [o};]

are the sample mean & and the sample variance-covariance matrix %; i.e.,

flr'—' ZXH —5 Ur; =_Z(er -5 ,!.L )(X;; -5 )u';)

5=l

Once we have these estimates, the VaR of a portfolio with arbitrary value of
investment ratios can be economically estimated from the Equation (1).



Normality provides "summability" of estimated parameters.
l.e. estimated parameter of portfolio can be obtained from the estimates
of each assets included in the portfolio.

3. Non-Normal LLD. Models

On the frequency distributions of log-ratio of financial variables such as stock
indices and carrency exchange rates, the heaviness of tails and the strong kurtosis
have been frequently reported. For example, Figure 2 suggests that the normal
model does not fit well for very small and large returns of YEN/USD exchange
rate. Such observations stimulate the trials of fitting heavier tailed distribution than
normal law; e.g., the stable distributions, logistic distribution, and z-distribution,
Some trials have expanded toward a construction of the pricing scheme for options
with the underlying variables whose log-ratios obey heavier tailed distribution than
normal.



For example, we assume that the cumulative distribution function (CDF) G of
X, is given by

X —m
G(:c):F( )
A

where F(x) = 1/(1 + ™) is the CDF of logistic distribution, m is the location
parameter, and s 1s the scale parameter. When the maximum likelihood estimates
(MLE) /i1 and § are used, the estimated «% point is given by /it — § - F~1(0.01).

Figure 3 shows the VaR estimates for daily YEN/USD exchange rates by i.i.d.
logistic model along with i.i.d. normal model. The VaR estimates by both models
behave very similarly but ones by logistic model are slightly more flexible, that is,
have more up and down movements.
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3.1. TRANSFORMATION MODELS

A class of models called fransformation models (Miura and Tsukahara, 1993) is
very useful for dealing with deviations from the normality. The CDF G of a typical
transformation model has the following form:

G(x) = h (F (‘“ - ”") :_9) ,

where (- : ) is a strictly increasing and continuous function on [0, 1] with A(0 :
6) = 0 and A(1 : 8) = 1. Figures 5 and 7 are examples of k. The parameter §

controls the deviation from F, the standard normal CDF for our case, and adjusts
to pecuhantles in each time period such as haavy-tails or skewness Given the
estimates 8, 1 and §, the a% point is estimated by /i1 — § - F~ Hh~1(0.01 : EJ)) We
discuss more detail about transformation models in Section 4.



3.2. NONPARAMETRIC APPROACH

One can also use the empirical frequency distribution to estimate the VaR. This
approach is often called historical simulation. Let 1{X; < x} be the indicator
function that takes one if X, < x or zero otherwise. Given X,_{, ..., X,_r, we
define the empirical CDF F as

T

F(x) = ;-;: I{X,— < x}
which is an estimate of the theoretical CDF F of the rates of return X;. Under
the i.i.d. assumption, /{X; < x} are 1.1.d. Bemoulh random variables with the
probability of occurrence F(x). Therefore, nF (x)isa Binomial random variable
and the MLE of F(x), which is also unbiased, is nF (x). The estimate of @ % point
is given by F- N /100).

A percentile point of the empirical CDF is very sensitive to a few outliers.
In Figure 4, we see a period of relatively large volatility affects succeeding VaR
estimates.
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4. Examples of Transformation Models

Let us assume that an observation X, follows CDF G where G(-) is of the form

G()=h(F(}:0),

where h(- : 8) is a strictly increasing and continuous function on [0, 1] for each &
with (0 : 8) =0and k(1 : 8) = l;ie, hA(-: g) is a distribution function on [0, 1]
whose density is positive on [0, 1].

Let U be a uniform random variable on [0, 1]. X is regarded as a mapped value
of U by G~', which in turn is a compounded mapping of h~'and F71i1e.,

X=G6"'aH=F ' ' :98).

If F is the correct CDF, h(+) becomes the identical map and U is directly mapped
by F -1 The functional shape of 4 controls the deviation of G from F. When F(:)

is normal, we aim to find a suitable family of functions h(- : 0) so that G(-) is a
non-normal, e.g., heavy-tailed or skewed CDF.



4.1. TRUNCATED POISSON COMPOUND
exp(6t) — 1
exp(@) — 1°

h(r:8) =

Note that (¢ : 0) = ¢ for t € [0, 1] by L’'Hospital’s rule. The transformation is
expected to represent a skewness of distributions (Figures 5 and 6).

For 6 > 0, the function 4 is related to the maximum of the observations coming
in when the number of observations N follows a truncated Poisson distribution

with parameter 8; i.e., a Poisson distribution conditional on {N > 0}. If ¥;, i =

1, ..., N arei.i.d. with distribution function F given N,
oo
Pmax¥; <x} = Y P{max{li, ..., Yw) <x|N =n}P(N =n]

n=| '

oa

an 6_9
= F'(x)  — .
— 2 n! 1—e®

= [efF& — 1} .

el —1 -

The parameter 8 indicates the intensity of underlying trading responses or flow of
market information.
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Figure 5. Truncated Poisson compound transformation. 6. Density functions of truncated Poisson compound models.



472, ANTI-SYMMETRIC BETA DISTRIBUTION FUNCTION
1
ht:0)= | ——=s*"'1-5)"""ds, 6>0,
0 fo 5e.ey O Y
where B(a, 8) = T'(@)T'(8)/ ['(o.+ B) is a Beta function. The choice 8 = a = 8
provides a family of anti-symmetric transformations around 1/2, i.e.,
hit :0y=1—h(1—1:8), te[0,1/2].

Note that (¢ : 1) = ¢ for t € [0, 1]. This transformation is expected to control the
heaviness of tails as shown in Figures 7 and 8.
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Figure 7. Anti-symmetric Beta transformation.

Figure 8. Density functions of anti-symmetric beta transformation.




Suppose that we have n i.i.d. observations Y1, ..., ¥, with common distribu-
tion function F. The transformation is related to the kth-smallest observation Yy,
as follows:

P—{Y(k) =< I} = P[F(Y{U) < F(I)]
P{Uy < F(x)}

fF(I] L S.{'-—l (1 . S)n—de
o Blk,n—k+1) ‘

where Uy, is the kth-ordered statistics of n i.i.d. Uniform random variables over
[0, 1] and follows the Beta distribution with parameter (k, n — k 4 1). The anti-
symmetric Beta transformation /(- : €) corresponds to the circumstance that the
median of observations is alway reported and thus 8 = k = n—k+-1. The parameter
& controls the intensity of market information flow as before.

{

(2)
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S. Time-Dependent Models

Another way to look at the deviations from normality is time-dependent volatility.
For example, a typical empirical distribution of simulated Gaussian data whose
variances change stochastically has heavier tails than those of normal distribu-
tion. This stochastic volatility has been recognized in the VaR measurement of
financial portfolios and schemes such as GARCH and exponentially weighted
mean-variance, both of which extend the simple i.i.d. normal model, are incorpor-
ated to take care of these non-normalities and hetero-scedasticity of distributions
(5. P. Morgan, 1995).

It is often claimed that daily rates of return have time-varying or stochastic
volatilities for large number of assets. For example, time series plots such as Fig-
ure 1 are considered to support the evidence that there are periods of relatively high
or low variations. In this section, we discuss a statistical model and a hybrid of stat-
istical models and data analytic approach (Tukey, 1977) for possibly time-varying
volatilities.
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Figure 9. YEN/USD daily data: 1% VaR estimates by GARCH(1,1) model (solid line) and
weighted normal model (broken line) along with log-ratios,

Figure 9 draws an example of the VaR estimates by univariate GARCH(1,1)
model. The VaR estimates move rather radically as if they copied the rates of return
themselves. We may ask whether the move is too sharp from a practitioner’s point
of view.



5.2. WEIGHTED LIKELIHOOD FUNCTIONS

The exponentially weighted mean and variance have been recognized as useful

practical devices to catch up with time-varying volatilities in data (J. P. Morgan,
1995).Forj=1, ..., T, let

2
—T !
Zj:] A

Given X,;_(, ..., X,_1, the exponentially weighted sample variance is computed
as

w; = 0<A<l. (3)

T
G = Z wi{X,—; — i)°,
j=i

where © = ZL, w;X,_; 1s the exponentially weighted sample mean. The J, .
Morgan’s estimate of the ¢ % point is given by [t — z, 6. As seen in Figure 9, the
estimated VaR move more flexibly than the i.i.d. normal model but not so radical as
GARCH(1,1). The parameter A controls the roughness of the VaR estimates. In the
above example, we set A = 0.94. The VaR of a portfolio can be treated 1n a similar
way as the i1.i.d. normal model by replacing the sample mean and covariance with
their weighted counterparts.



Here we show the J. P. Morgan’s estimate is a special case of more general class
of procedures. Let f(-|8), & € © be a parametric family of density functions. We
define the weighted likelihood function of X,_;, j =1, ..., T by

LE(0) = T1i_ f (X,—;10)™ (4)

and the weighted log-likelihood function by

T
1(8) = Y w;log f(X,—;6). (5)

j=1

The latter 1s more convenient for numerical treatments.
When f is the normal family; that is,

] - {A'—g]?*
e e d

A 2mo? ’

The estimates of 4 and o* which maximize (4) and (5) are, in fact, exponentially
weighted mean i and variance & °.

fxlp, o) =



One can consider that the relative frequencies are now weighted by w;’s instead
of 1 for the i.i.d. case so that the recent observations have more weight than the
remote ones. This is to provide time-varying effect on the estimates by letting
the observations to concentrate more on the recent values in order to take care

of the recent changes in data. Here we do not construct a statistical model for time-
dependent structures in data, but treat the dependence by weighting. In a sense, this
is a hybrid of formal statistical models and data analytic approach.

| R N



The advantage of introducing weighted likelihood is that we no longer have to
restrict ourselves to the normal law. Instead, we can let f be logistic or a trans-
formation model. Given the parameter estimates based on (5), the &% point of the
distribution can be estimated as in Sections 3 and 4. In Figure 10, we compare
the VaR estimates of weighted truncated Poisson compound model and weighted
normal model. Though both estimates behave very similarly, a difference appears
when the rate of return jumps upward. The Poisson model accepts these jumps
as skewness of the distribution, whereas the normal model captures them as large
volatility in both tails. As a result, the normal model may overestimate the VaR
when symmetry in the frequency distribution is missing. Any symmetric model
including GARCH shows the same reaction to large upward jumps.

- T . | 1
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Figure 10. YEN/USD daily data: 1% VaR estimates by weighted Poisson compound model
(solid line) and weighted normal mode! (broken line).



5.3. WEIGHTED EMPIRICAL CDF

The idea of weighted likelihood is also applied to the nonparametric approach
which were based on empirical CDF. Here we introduce the weighted empirical
CDF that assigns a weight to each observation depending on which time point the
observation is taken. Given a set of weights such as (3), the weighted empirical
CDF is defined by

T
Folx) =) wil{x: X,_; < x}.

J=1

As we have seen in Section 3.2, the usual empirical distribution functions are based
on i.1.d. observations and put equal weight w; == 1/T on each observation.

This construction will form a basis for the nonparametric approach to take care
of time-dependent structure in data. As we see in Figure 11, the VaR estimates
based on the weighted empirical CDF are rather conservative but more flexible
to change than the i.i.d. empirical CDF model, since effects of relatively large
observations die rapidly as time goes.
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Figure 11. YEN/USD daily data: 19 VaR estimates by weighted empirical CDF model (solid
line) and weighted normal model (broken line).
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6. Back-Testing

Let Q, be the estimated 1% quantile of X, at time ¢. Specifically or not, Q, is a
function of the past observations X,_,, ..., X,—rand , ..., @1, O, Oigls ---
may well be dependent random variables. The idea of back-testing is to judge the
goodness of a VaR estimation procedure by counting the frequency of the events
(X, < O,). The frequency is expected not to be far off 1%.

We tested 12 financial variables that consist of 3 stock indices (DAX, S&P500,
TOPIX), 2 exchange rates (GMM/USD, YEN/USD), 6 mterest rates (LIBOR6m,
USDSwap2yr, FIBOR6m, GMMSwap2yr, TIBOR6m, YENSwap2yr), and GOLD.
For each of these variables, we applied the i.i.d. normal model(N), the i.1.d. logistic
model(L), the i.i.d. empirical CDF model(E), the weighted normal model(WN), the
weighted truncated Poisson compound model(WP), the weighted empirical CDF
model(WE), and GARCH(1,1)(G). The period of observations is from 3 June 1992
to 31 July 1995. To estimate VaR on one day, 250 past log-ratios were used. The
result is summarized in Table 1.



Table 1. Observed frequencies (%) of 1% tail events for 12 financial

vartahles.
N L E WN WP WE G
DAX 190 102 073 161 176 220 146
SPS00 100 190 073 234 220 234 234
TOPIX 176 1.61 132 234 234 322 176
GMM/USD 161 132 088 234 249 205 220
YEN/USD 264 249 073 293 278 264 3.22
LIBOR6m 146 146 059 264 190 176 1.6l
USDSwap2yr 220 146 1.02 220 249 234 205
FIBOR6mM 234 395 059 322 264 234 3.07
GMMSwap2yr 1,76 1.61 059 L17 132 215 L.17
TIBOR6m 5727 659 176 395 410 307 498

YENSwap2yr  3.66 337 234 278 278 293 2.64
GOLD 161 176 059 205 220 205 234

The 1eturns of short interest rates typically have rare but enormous outliers. For
such variables, the i.i.d. models, except the empirical CDF, show some tendency of
underestimating VaR. The i.i.d. empirical CDF model IS conmstently conservatwe

[P —— Y



Remark (worry) on Accuracy

Let us define U, = I{X, < Q,}. The rationale behind the back-testing argument
is that {U,} are expected to behave as independent Bernoulli trials with probability
of occurrence equal to 0.01. However, it is not hard to imagine that the ideal
situation does not hold in many cases. First, since successive {; are estimated
on overlapping samples of returns, the independence of U is dubious. Second,
even if O, is an unbiased estimate of the 1% point, the unbiasedness of U, i.e.,
E{U, = 1} = P{X, < Q;} = 0.01, is not assured. Contrary to the conjecture in
Hull and White (1998), U, may be biased because of the estimation error in ;.
We see this by the following simple example.



Suppose that X, ~ N (i, 6%) and Q; ~ N(n, ¥?). We assume @ is an unbiased
estimate of the 1% quantile of X, so that n = ¢ ~ 2.33¢. Then,

rXr_Hf Qr"ﬂ«}

<l

| o o

fX-_ _

_ pl ! ;U'{Q.r ng
| o Yy O

P{X, <O} = P

- 2.33] .

Since (g, — 1)/y is a standard normal variate, one cannot always expect PlX, <
0.} ~ 0.01. The effect of the term is negligible only when the estimation error of
0, is very small; that is, y is far smaller than . The implication of this example is
that a ‘good’ estimate of VaR with unbiasedness and small variance may produce a
good performance of back-testing, but the other direction is not always guaranteed.

Q-n i
O
But, it 1s not so, | am afraid.

They can be safe if IS zero.




Testing if Log ratios are i.i.d.

BDS statistics
log(S,,,/St), t=1,2,....



The following definition of BDS statistics
IS borrowed from this paper.
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The time series to be analyséd (X : £ = 1,2,..,T) is used to form the so-called
IN-histories
XéN = (Xt:Xt-I-l: erey Xt"l-N—-l)

Bach N-history can be considered to be point in an N-dimensional space, where
N is called the embedding dimension. These N-histories can be used to define a
correlation integral

Cn(e) = Z > L_.(Xt N xN )
TN(TN

where Ty =T — N + 1, and I, is the indicator function of the event
I Kipi — Xt [< e, t=0,1,...,.N —1.

ie. L (X}, X)) is unity if | XN — X |< e and zero otherwise. The correlation
mtegra.l Cn(e), can be interpreted as an estimate of the probability that X}V and
XY are within a distance e. Given this interpretation, we can see that under the
mdependence hypothesis

Cn(e) — Ci(e)V, as T — 0



Cn(e) = Ci(e)N, as T — 0

holds. That i 1s, Pl Xeri — Xopi[< €), (§ = 0,1, ..., N —1) is, due to independence,

equal to [j " P(| Xe4i—Xses |< €) , which is estmlated by C1(e)*" as the variables
are identically distributed (Brock,et el., 1991 and Cha.ppell et al., 1996}. Thus,
the BDS statistic reduces to |

Wale) = WVT(Cr(e) — Ca(e)™1/6n(e),

where 4y (e) is an estimate of the standard devision under the null hypothesis. The
distribution of Wy (e) converges to a standard normal with expectation zero and a
variance unity, as T approaches infinity. Thus, one can now calculate the statistic
that has a standard normal asymptotic distribution under the independence hy-
pothesis. If the absolute values of the test statistic are large, the null hypothesis
of IID (randomness) is to be rejected. The critical values reported by Brock, et
al.(1991) for significance levels of 0.05 and 0.01 are 2.22 and 3.40 respectively.
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Section 3. Commodity linked Bond

Miura & Yamauchi (1998)
Probability of Default.
Linear SDE and its Solution.



#‘ Asia-Pacific Financial Markets 5: 129-158, 1998.
i* © 1998 Kiluwer Academic Publishers. Printed in the Netheriands.

The Pricing Formula for Commodity-Linked

Bonds with Stochastic Convenience Yields
and Default Risk

RYOZO MIURA! and HIROAKI YAMAUCHI?



Abstract. At the maturity, the owner of a commodity-linked bond has the right to receive the face
value of the bond and the excess amount of spot market value of the reference commodity bundle over
the prespecified exercise price. This payoff structure is an important characteristic of the commodity-
linked bonds.

In this paper, we derive closed pricing formulae for the commodity-linked bonds. We assume that
the reference commeodity price and the value of the firm (bonds’ issuer) follow geometric Brownian
motions and that the net marginal convenience yield and interest rate follow Omnstein~Uhlenbech
processes. In the appendix, we derive pricing formulae for bonds which are the same as the above
commodity-linked bonds, except that the reference commodity price in the definition of the payoff
at the maturity is replaced by the value of a special asset which depends on the convenience yield.

Key words: bond pricing, commodity-linked bond, convenience yield, default probability, PDE.



Pay-off of commodity bond.

Min{ V;, F+max{S; — K,0}}

where

V, , te]0, T], is the value of a firm which issues this bond.
F is a face value of bond

which the firm pays to the bond holder at time T.

S, Is the spot price of the underlying commodity.

K is a level such that a coupon amount max{S,; — K, 0}
will be added to F at time T.



R N N . N T
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Figure 1. Payoff chart at the maturity.
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Let S, V, and § be stochastic processes. 5; is the spot price of the commaodity,
V, denotes the value of the issuer (or the value of the firm), and &, represents the
instantaneous net marginal convenience yield rate. We assume that S, V, and &
satisfy following stochastic differential equations (in short, SDE):

ds | |
?:as-dt-l*dg-dwlg _ (1)
dv

_V—_-;av-dt+crv-dWV 2
d§ = k(us; — 8)dr 4+ o5 - dWs , (3)

where W, Wy, and W; are the standard Wiener processes and their correlation are
such that dWs - dWy = psvdt, dWys - dW; = ossdt , and dWy - dW; = pvsdt .



1.2. CONVENIENCE YIELD

The owner of the commodity has the rights (this is an option) to decide how he/she
will treat the commodity; sell, lend, or store it, or even consume it. As for the
consumption-use commodities such as crude oil or copper, the owner may con-
sume it for his/her own manufacturing activities, or he/she may also store it for
his/her future consumption or future sell-out. The owner of the futures contracts or
the other contingent claims, however, does not have this rights because of lack of

storage until the maturity.
Futures contracts

Spot price S, and Futures price F.
In theories for no-arbitrage markets,

E[S; [S.]1=e"""S, =F, if r is constant.

But if the commodity is ....... ( Oil in 1992, for example)

What Does Backwardation Mean?

A theory developed in respect to the price of a futures contract and the
contract's time to expire. Backwardation says that as the contract approaches
expiration, the futures contract will trade at a higher price compared to when
the contract was further away from expiration. This is said to occur due to the
convenience yield being higher than the prevailing risk free rate.



1.1. REVIEWS

Schwartz (1982) introduced a general framework for pricing commodity-linked

bonds where (1) the reference commodity price follows a geometric Brownian

motion and the interest rate is constant. He also covered in his framework the three
other cases where (2) the commodity price and the bond price (1.., the interest rate
is stochastic) follow geometric Brownian motions, (3) the commodity price and the

value of the firm (bond’s issuer) follow geometric Brownian motions and the inter-

est rate is constant, and (4) the interest rate behaves stochastically as an extension

to the case. There he obtained the closed pricing formulae of commodity-linked

bonds for the first three cases (1), (2) and (3). Defaults at the time of the maturity

of the contingent claim (or, the bonds) of the issuing firms were considered in
(3), where a pricing formula was derived. But he did not derive any closed pricing

formula for the case (4). In his paper there was no discussion about the convenience
yields.



Gibson and Schwartz (1990) is the first to consider the stochastic convenience
yields for the bond pricing model. They derived the partial differential equation for
the price functions of the assets defined as functions of spot commodity price and
the net marginal convenience yield. They estimated parameters for the behavior
of the net marginal convenience yield from market data, and calculated numer-
ically the futures prices of the commodity.! Bjerksund (1991) derived a closed
pricing formula for the commodity contingent claims where the commodity price
follows a geometric Brownian motion, the net marginal convenience yield follows
an Ornstein—Uhlenbech process, and the interest rate is constant. He did not con-
sider the default of the issuing firms at the maturity of the commodity contingent
claims. Gibson and Schwartz (1993) utilized Bejerksund’s (also two other parties’)
pricing formula and Black’s (1976) formula to fit the market prices of the crude
oil futures options. Since our concerns in the present paper are the mathematical
pricing formulae for the commodity contingent claims, we do not further refer their
fitting results. They were able to calculate numerically the present prices of the
commodity-linked bonds, but did not derive a closed analytical pricing formula.



1.3. OUR RESULTS

In this paper, we take the approach of Gibson and Schwartz (1990, 1993), Bjerk-
sund (1991) to express the price change of the reference commeodity in relation
to its convenience yield. In Appendix C, we drive a pricing formula for a special
derivative. The underlying asset of this derivative itself is a derivative security,
which is seen in Bjerksund (1991), that consists of a commodity and the continu-
ously reinvested net marginal convenience yield. These two appraoches reflect two
ways of treatments, that we could take, for the pricing of the commodity contingent
claims. The latter one uses the value of the ownership of the commodity as its
underlying variables which receive the total expected return derived from its price
changes and net marginal convenience yield. Then, we see that the resulting pricing
formula does not explicitly depend on the parameters related to the movements of
the convenience yield. On the other hand, the former one uses the market price of
the commodity where the owner of the commodity contingent claim cannot receive
the convenience yield deriving from the ownership of the commodity, but receives
the total expected return from its price changes.
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The pricing formula i the former case includes the parameters related to the
convenience yield. By using this formula, we draw several graphs of the bond
prices and the default probabilities. The default occurs when the total payoff to
the bond holder exceeds the value of the issuer at the maturity. The figures for
the default probabilities provide us useful information to the bond issuer/holder in
regard to the risk management.

N_ote in Proof

After the final revision of this paper toward this publication, we came to know the work of K.R.
Miltersen and E.S. Schwartz (1997) ‘Pricing of Options on Commodity Futures with Stochastic Term
Structure of Convenience Yields and Interest Rates’. Publications from Department of Management,
School of Business and Economics, Odense University. Their paper develops a model for pricing
options on commodity futures in the presence of stochastic rates as well as stochastic convenience
yields.



Derivation of Closed from pricing formula

of Commaodity linked Bonds.

Using the Standard PDE approach
explained last week.

Case : assuming Interest rate r is constant.

The case of stochastic interest rater is
shown in section 4 of the paper.



2. Closed Pricing Formula for the Commodity-Linked Bonds B(S;, V;, 8¢y T)

In this section, we derive the pricing funciions of the commedity-linked bonds,
B(S,, V,, 8,, 7). To start with, we define our stochastic variables and derive the
PDE. Then we obtain the closed pricing formula for the commodity-linked bonds
that satisfies the derived PDE with its payoff at the maturity as the boundary
condition.

p— - - . - L |
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Let S, V, and § be stochastic processes. 5; is the spot price of the commaodity,
V, denotes the value of the issuer (or the value of the firm), and &, represents the
instantaneous net marginal convenience yield rate. We assume that S, V, and &
satisfy following stochastic differential equations (in short, SDE):

ds | |
?:as-dt-l*dg-dwlg _ (1)
dv

_V—_-;av-dt+crv-dWV 2
d§ = k(us; — 8)dr 4+ o5 - dWs , (3)

where W, Wy, and W; are the standard Wiener processes and their correlation are
such that dWs - dWy = psvdt, dWys - dW; = ossdt , and dWy - dW; = pvsdt .



et the parameters be constant.

‘We postulate that the parameters as, @y, £, {s, 0s, OV, O5, PsV, P55 and pyg are
constants. We assume in the above that d§ follows Ornstein—-Uhlenbeck process
that can take pegative values. This is not a problem for the convenience yield, be-
cause our definition (3) is for the net marginal convenience yield. The net marginal
convenience vield is defined by the differences that the gross convenience yield
subtracted by the cost of carry, thus it sometimes takes negative values.

Let the Interest rate r be constant.

The case of stochastic interest rate can be worked out.
It is done In the section 4 of this paper.

We also postulate that there is a risk free interest rate and that ﬂ.'liS is a constant
during the time interval from ¢ to T. The length of this time interval is denoted by T.
In this paper, we assume that assets are infinitely divisible and that a short position
is allowed. We also assume that there is no-arbitrage opportunity in the n}arket.
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Commodity-linked bonds have the payoff at the majority such that the owner
of the bonds has right to receive, in the case of no default, in addition to the face
value, the excess amount of the spot market price of the reference commodity over
the prespecified exercise price. In the case where the default is considered, the
payoff at the maturity is the minimum of either the payoff in the case of no default
or the value of the issuer at the maturity. The total amount of the payment to the

bond owner at the maturity 1§
min[Vr, F + max{Sr — K, 0}] . (4)

¥ and K are constants, F is the face value of the bond and K is the prespecified

----- ~ 4 o . AU VR, FPNUIT, [Ny REP. ol Y



Assumptions on the parameters.

so that the assets In this market have distinguishable stochastics.
The following 7's are defined in the next slide.

“_--Also :ave assume that there are N(N > 3) different assets in the market with
price functions B;(S;, Vi, 8., T} for i-th asset, where i = 1,2, ---, N, that have the
same reference commodity. This is not an unrealistic assumption. Moreover, we
postulate that for any choice of the three assets, the three vectors each Of-WhICh
consists of 7k, 7i,, 7} in the following equation (6) for B;(S;, Vi, ;. T) are linearly
independent to each other: that is, the following matrices are non-singular for any
choice of the three derivative assets.

7l w7l | (5)

where i, j,k=1,---, N, and ,«—éj,_i .#kzand‘j #,k_',



Standard PDE approach (recall from the last week's lecture)
We used Ito stochastic defferentials.

TP ARWEWr &y 3 v

Next, we derwe the PDE for the prlcmg function of the commodity-linked bond,
B(S,, Vi, 8, T). By using Ito’s lemma, we obtain the following equation.

d—Bl.i—-—goBI dt + 7 - dWs + 7ty - dWy + 73 - dWs, (6)
where
i 3 B:
T +% aa::"Bsz "“2 aafzvz ""% aazaﬁ *
+333VSVJSO'W35V + 353350'50-8955 -+ 3V35VUV0'5PV5 )
©B,i — — B, )
BBI SO’S aBi VCFV EJB, as




We construct a portfolio W such that the portfolio consists of three different
derivative assets and the commaodity. We denote the weights of each assets in this
portfolio as x; (i = 1, ---,4) and the sum of these portfolio weights is equal fo 1,
ie.,

4
Z.Xf =1.
i=1
Then the rate of return of the portfolio W 1s given dby
dw dB; dB; d B3 dS
— =X1— co— Xy | —=+4 - dt )] . 7
W 1 BlJf'xZ B, X3 B3+x4 (S+r ) (7)

This equation utilizes the property that the total rate of return of the owner of the
reference commodity is the sum of the price changes of the commodity and its
convenience yield.



Recall the arguments, from last week,

for "Riskless" portfolio and no-arbitrage.

We use a linear equation to derive "riskless" portfolio weights ;
variance(stand. dev.) terms be zero and portfolio weights sums to 1.
Also another linear equation to set "Drift" terms equal to interest rate r

By using the standard no-arbifrage argument, we obtain the following equa-
tions:

- - = 1 -1 -1
—r T T T
VB2 S I s O IS PR It A I P T I (8)
@p3—Y Tg Ty s
s+ 6 —r | 05 | _0_ _0_

Note that A, Ay, and Az are the market prices of risk for the commodity price, the
value of the issuer, and the net marginal convenience yield, respectively. They are,
logically at now, time dependent and vary with regard to the choice of the assets
in the portfolio W. We show in the Appendix A that these do not depend on the
choice of the assets. We assume that these A’s are constants in solving the following
PDE (9). Note also that first, second, and third row of (8) are the equations for any
derivative assets and the fourth row of (8) is the equation for the commodity itself.



From (8) we have the following PDE.

9B 9B 9B
95 o i Y 2z — 8} — hags) —
T S(r —8) + aVV(CCV 20v) + = {k (s — 8) — Asos)
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Equation (9) is the PDE which every'B(S,, V,, 8:, T) must satisfy.

©)

Vovospvs = 0.

Our commodity linked bond has Pay-off .
Min{ V;, F+rmax{S; — K,0}}.
Boundary condition B(V;,S;,0,0) = Min{ V;, F+rmax{S; — K,0}}



‘Next, we derive the closed form of the pricing function for the commodity-
liiked bonds B(S;, V,, 8;, T) under the payoff function (4) at the bond maturity.
This is done by applying Feynman—Kac Theorem (see Friedman, 1975, Chapter 6,
Theorem 5.3). To calculate the expected value of the payoff function, where we

write [S; , V;, é,] for the corresponding stochastic processes, we need to obtain the
joint distribution function of [S‘,, V., 5;] based on PDE (9). The detailed derivation
is shown in subsection 4.3.

From (9) we have the following SDE.

3 31: ] [ S{(r - gr) ] i Zl,r il
dl V, | =] Vilav—hpoy) |&t+G-d| Z,, |, (10)
__gr N _K(P-'»é_gr)—}‘éo'ﬁ_ _23,1_

where the Z 1.5 Zg, [, 123, , are another set of independent standard Wiener processes.

Note that the coefficients in PDE correspond to
drift and variance in the corresponding SDE.



A choice of G is given By

G= Vioypsy Voy-¢c 0 ;

ospss 05 € Os-f

' - _ 2

where ¢ — /1 _ ok, E= Pvs — PsvPss 7= \/1 _ (pvs ps:ﬂsa) _
1— p2y 1= Pgy

The derivation of G is shown in Appendix B.



Because one of the drift term of SDE (10) is the product of S; and §,, SDE

(10) is non-linear. However, we make the following change of variables in order
to transform this non-linear SDE to a linear SDE. Then let P, = log §; and J, =

log V, . By applying Ito’s lemma, we have

—

—8, + (r — %Uf) ]

ay — Moy — 20 | dt +

i (it — 6;) — h30s |

og 0 4

+ | ovpesy op-c 0

ospss Os-€ 05 f

(11)



Substitute the following A,a, and G into the solution in the next slide.

0,0,-1
A= 0,0,0

0,0,—«x
B isG

q) — A(t—tp) —

1

2

a=

Kil; — A0

1,0, 1 (%) 1)
K

0,10
0,0,e (%)

1

o, — 4,0, —EGV

2

1,0, 1 (ex(™) 1)
K

0,10
0,0,ext%)




Note: Here, we need to solve the linear SDE.
Solution form is given in a text book(Arnold's,for example).
Or, you can just differentiate (stochastically) the solution,
then you will see that it satisfies the SDE.
By solving the stochastic differential Equations (19), we derive the joint proba-

| bility density function of [P;, J;, §,, 7] for the time interval [#p, 7] using theorem
8.2.2 in Arnold (1973, p. 129). By theorem 8.2.2, the SDE

dQ; = (A(t) - Q; +a(r))dz + B(?) - dZ,
has the solution

@71 a(s) - ds + f o1 . B(s) - dZy) (20)

o

Qr = CI)I(QI{) +/

10
with the initial value Q,., where

Note that the third term in a form of stochastic integral is a random variable
with a zero-mean normal distribution.



Now by using Theorem 8.2.2 in Arnold (1973, p. 129), we can solve the SDE
(11) and derive the joint distribution of [F,, J;, §;] for the time interval [#, T]. The
solution of (11} is given by

P:, o (1) }gr
:{I = IB(]T) + }-:I' ]
5, y () Z,

where m =t — 1o, [ (), B(7r), v {(or)] are deterministic functions such that

K

B —R__ a2 —a KT
(1) Py + 85— + (?’ — 7’) 7T (ks — Aaog) 5T
JB(-“:) — Jru + (ay — Aroy — %0’%)?’[ ’

y ()

—xT

S ™™ + (K fs — h305) =2

and [X,, Y,, Z,] are jointly normally distributed. Their means are zero and the



and [X,, Y., Z,) are jointly normally distributed. Their means are zero and the
variance-covariance matrix Y  is given by

Var(X;) oxy  oxz
Yo=| oxy Var(f) ovz |,
oxz oyz Var(Z;)
where
[ > U505083s 0’? 0505058 Uéz
Var(X,) == (032—2 + =3 +2(1-——-e‘”)( — — =7 )
K K K K

2
g
1 — g~ 27 3

Var(Y,) = o3m

0.52(1 _ e—an‘)

{ Var(Z,) =
2k
oyospvsT  oyvospys{l —e™7)
Oxy = OsOyPsvTT — + 5
K ic

osospss(L —e™*™)  of (1l —e™7) + o (1 — e*7)
Txz = K K2 2ic?

oyospys(l — e ™)

oyz =
[ K



The joint density function of [X,, ¥, , Z,] is given by

— - ~ 1 . 1“T _]_ ~
X, Yio Z1) = -exp{—3V v},
f( 1y Yt 1‘) (2}'{)3/2 . \/H_Z— p 2 Z
where
Xy
V= yr
Z

H

Then we calculate the present value of the expected value of the payoff function at
the maturity (see Figure 1 for the payoff chart at the maturity). The solution of the
PDE (9) with the boundary condition (i.e., payoff) (4) is given by

L

I§f = S;
B(S:, Vi, 8;,8) = E | min{Vy, F+max(Sr — K,M}- 77|V, = V,
& = &



B S, = S,
B(S:, Vi, &.,1) =E | min{Vr, F + max(Sr — K,0)}-e7’* |V, = V,
| 5; = ISI

B S = S

= E | min{ePOPT F 4 max(e®@OHT_K 0 - e |V, = V,

SI = 53

oo pR
= F - exp{—r7} f f Jxy(xe, y)dx, dy; +
H J—oo

H R (12)
+ exp{B(z) — rt} - f f exp{yr} fxy (xe, yr)dx, dy: +
. 0 o
+ exp{B(r) —r1}- f fR exp{y:} fxy (*:, y)dx; dy: +

0C 00
+(F - K)'ef*q?'{““i"'ﬂ}'];2 j}; fxy(xe, y)dx; dyr +

+ expla(t) —rr}- -[Q j}; exp{x:} fxy (xe, y)dx; dy,

where fyy(x;, y;) is the marginal density function of x; and y, and {H|yr =
log F — B(D)}, {Rlxyr = log K — a(z)}, and {Q|yr = log{F + expla(z) +
xr}— K} — B(o)}.
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Figure 1. Payoff chart at the maturity.

Area :
V; > F +max{S; —K,0} or V; > F + max{S; — K, O},
with S; > K or S; < K.



Numerical aspects of

Bond prices and
Probability of default



3. Bond Prices and Default Probabilities

In this section we show several figures for the bond prices and the default proba-
bilities as functions of parameters. We list a Mathematica’s program for computing
the above pricing function (12) in Appendix D. The default probabilities are given
by the following formula, that is, we calculated the probability that the total payoff
to the bond holder is equal to Vy, i.e., the light gray area in the (Sr, Vr) domain
of Figure 1.

H R
Default probability = f . f F(xe, ye)dx, dy, +
-0 J —co

4 oo
‘|‘f f f(x, y)dx dy, .
-0 J R

Vr

(13)

K

Figure 1. Payoff chart at the maturity.



When we use these formulae, we have to estimate each of paramters of the
processes for S;, V;, §; and a constant r. For the commodity price §;, and the

mterest rate r, they are quoted in the market, thus we can observe directly each of
them and estimate the parameters o5 and the constant r. But it is difficult to observe
the value of the 1ssuer V;, and the net marginal convenience yield §,, because they
are not quoted or reported in the market. Therefore we have to estimate each of
V; and §; or to use some proxies instead. For the value of the issuer, one idea to
estimate each of parameters oy and oy of V; is that: we can treat stock price of
this issuer firm as a call option on the value of the issuer, then we squeeze out the
value of the issuer firm from 1ts stock price. Unfortunately to accomplish this idea
1s not an easy task because it is difficult to know the whole cash flow of the issuer.



In this section, the initial value of V, and the parameters for the behavior of V,
are set rather subjectively. For the net marginal convenience yield, we recommend
a simplified estimation procedure by Gibson and Schwartz (1990) or its revised
scheme by Yamauchi (1998). Their methods use futures prices of the commodity
with various delivery months. By isolating the differences between futures prices
with neighboring delivery months and also by excluding interest rates effects for
the futures prices, they approximately estimate one month or two months net mar-
ginal FORWARD convenience yield rate and might regard the AGGREGATED net
marginal forward convenience yield rate as the net marginal covenience vield rate.
Then they can be used to estimate each of parameters of §, .
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The 1nitial values required for the calculations of the price functions and default
probabilities are set in the following way. The issuer of the commodity-linked bond
has the business of producing and selling the commodity which is the underlying
asset of that commodity-linked bond. The issuer wants to issue this bond with
face value ¥ = 100 and the maturity of 5 years. The strike price is set equal
to the price of commodify at the time of issuance. The current interest rate is r

is 4% per year. The initial value of this issuer V; is 200 which consists of this
commodity-linked bond and the equity. Its expected growth ratio ay is 2% per
year and its volatility oy 1s 30% annually. These parameters of the value of the
issuing firm are set so that the probability of Vr < F is approximately 16% at the
maturity. The current prices of commodity S; is 20 and the price volatility o 1s
39.2% per year. This volatility parameter 1s estimated from WTI crude oil prices
data in NYMEX for the period from September 4, 1990 to June 20, 1994. To set
the initial values of the parameters of the process of the net marginal convenience
yields, we refer the detail to Yamauchi (1998). In his paper, he first calculated, from
daily futures prices of different maturity, the daily values of 3 months net marginal
convenience yield rates in a similar way to the one by Gibson and Schwartz (1990).



Then, based on these daily values, he estimated the parameters of the process 6. The
whole estimation period is from September 4, 1990 to June 22, 1993. He divided
this estimation period into two periods; from September 4, 1990 to June 22, 1991
and from June 23, 1991 to June 22, 1993. From the former pernod, the estimated
parameters were such that: « = 19.122, y; = 0.324, and o; = 1.3050. From the
latter period, « = 4.547, pus = 0.021, and o5 = 0.2673. The estimated parameters
suggest that the convenience yields of crude oil at the former period showed a
very wild movements. During the latter period, the convenience yields seem to be
relatively stable. In this paper, we set two situations, namely situation A and B.
We use the estimated parameters from the former period for situation A and the
latter ones for situation B. We set the current level of the convenience yield rate &,
at 0.25 for both situations. When the spot price of this commodity moves up, the
convenience yield rate tends to move up in the effect according to their correlation.
Their correlation pgs 1s set at 0.75 for situation A and at 0.50 for situation B. These
correlation parameters are estimated from WTI crude oil prices and convemence
yield rates. Since we suppose this issuing firm sells this commodity to the market,
the value of this issuer is positively correlated to the changes of this commodity
prices and the convenience yields. Thus the commodity prices and the value of the
issuer is set to behave with correlation pgy = 0.50 for both situations. Also we set
the correlation parameters py; between the value of the 1ssuer and the convenience
yield at 0.50 for sitwation A and at 0.33 for situation B.



F =100 K =120 T =5 r =0.04 Sy =20 oy = 0.392
V, =200 oy =002 oy =03 A =-0067 & =025 psyv =0.5

Situation A | Situation B
k =19 pws =032 05 =131 « =45 s =002 o5 =027
Ay = 0.214 Pss = 0.75 Pvs = 0.5 Az = 0.074 Oss = 0.5 Pvs = 0.33

Figure 2 shows that the graph of the commodity-linked bond prices as a function
of the speed of adjustment «. To calculate the bond prices for Figure 2 and Figure 3,

we set us = 0.1, A3 = 0.12, 03 = 0.5, pss = 0.6, and pys = 0.4 apart from -
situation A and B, we draw these two figures to see overall responses of bond prices
and default probabilities to the values of «. Figure 2 suggests that a smaller level of
« makes the bond prices higher than that of a larger level of «. This means that the
premium portion of bond prices decrease as « become large, that i1s, movements
of the convenience yield become more stable rather than that of smaller level of «
when other parameters are kept fixed. Figure 3 describes the default probabilities of
the commodity-linked bond. This figure shows that the default probability become
high as « is at a smaller level. This result makes sense that the high premium,
which means in part that the expected value of the payoff at the maturity is large,
corresponds to the high defanit probability of this bond at the maturity.
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Figure 4 suggests that the bond prices will increase as o; increases for situation
B, while the bond prices do not seem to be affected by the changes of o in situation
A. This is because in a large level of «, the convenience yield rate returns to its
long term mean quickly even if o is at a large level. Consequently, the premium
portion changes little as o3 become large. Flgure 5 shows a graph of the default
probabilities as a function of os.
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Figure 6 shows that the higher the commodity prices S; are, the more expensive
the bond prices are. This 18 very natural. The strike price K is equal to 20, the
premium Increases as S, moves across K from out of the money to in the money.
Figure 7 1s a graph of the default probabilities of the commodity-linked bond as a
function of S;. This figure also shows that the default probabilities become high as
S; becomes large which is the same as Figure 6.

Figure 8 through 11 are the graphs in relation to the value of the issuer. Figure 8
shows that the higher the value of the issuer is, the more expensive the bond price
1s. Figure 9 suggests that the default probability decreases as the value of the issuer
V, increases. This is very natural. If V, is very small, the default probability of this
bond at the maturity is anticipated to be high. As for Figure 10 and 11, we see that
the larger the volatility of the value of the issuer oy is, the lower the bond price is
and, at the same time, the default probability is high. These are also natural.






Appendix.

Taken from Miura&Yamauchi (1998).

If you want to read a scanned pdf file, please
let me know.



Appendix: On Convenience Yields

Some explanation



1.2. CONVENIENCE YIELD

The owner of the commodity has the rights (this is an option) to decide how he/she
will treat the commodity; sell, lend, or store it, or even consume it. As for the
consumption-use commodities such as crude oil or copper, the owner may con-
sume it for his/her own manufacturing activities, or he/she may also store it for
his/her future consumption or future seil-out. The owner of the futures contracts or
the other contingent claims, however, does not have this rights because of lack of
storage until the maturity.
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The commodities prices are also seen to change with regards to the storage level
of the participants in the market. Since all the participants make their own decision
taking account of their own current and future perspective of inventory levels and
time intervals, the market prices will change as aggregated results of each activity
conducted by them. As Duffie (1989) discusses, the convenience yield is seen as
the value of the option to sell out of storage. We will thus assume that the yield will
change in relation to the scarcity of the commeodity in the market. A low inventory
level in the market, that is, scarcity of storage, leads to be backwardation of 2
market where the futures prices of distant contract months are lower than those of
the nearby (see, for example Edwards and Ma, 1992). This means that backwar-
dation occurs when there is a shortage of the available physical commodity. This

shortage implies the following attitude of the holder; ‘the holder of the physical
commodity are unwilling to part with it, even for short period of time (Edwards
and Ma, 1992)’ and thus generates the convenience yields. In this respect, we may
assume that there 15 an inverse relationship between the changes of the convenience

yield -and the changes of current inventory level in the market. Kaldor (1939) and
Working (1948) examined and affirmed this hypothesis.?



A statistical analysis for the net marginal convenience yield can be done using
spot and futures prices. Brennan (1991) squeezed out the net marginal convenience
yield from futures prices of gold, silver, platinum, copper, No. 2 heating oil, lumber,
and plywood. By analyzing those data, he showed their mean-reverting movements.
Gibson and Schwartz (1990, 1993) used the relations between futures prices with
different contract months to estimate parameter values in the models for the net
marginal convenience yields’ movements and utilized the estimated values for their
numerical pricing of the confingent claims.



Appendix A: Proof for the Independence of A1, A, and A3 on the Choice of
the Assets

By the standard no-arbitrage argument, we derived constants Ay, A, and A4 for
the choice of the three assets, namely,. 1st, 2nd, and 3rd bonds in Section 2. They
are tentatively dependent on the choice of three assets: In this appendix, we prove
its independence on the choice of the assets. First, we exchange 3rd bonds to 4th
bonds. The same no-arbitrage argument is valid for this new portfolio and we obtain
a mew set of constants A}, A}, and A with the following equations:

" - - 1 - 14 - -
(PB,l — F ?TI% Jrg .Tfé
Y2 —7F DY, Ty y Ty / g
T R T - B B ok R R e o R B (A1)
©r,4 s % 5
OL’S“I—31 —F gg 0 0

From equations D = A; - A+ Ay - B4 A5 - C and (A.1) and (5) (the assumption of
non-singularity), we obtain

1 .1 171
A1 A% :rrg Hg Ty Y1 —F
] 2
Az }Lg gs 0 O s + 5; —F

This procedure can be iterated. The iteration is done for exchanging 2nd bond
to S5th bond, and 1st bond to 6th bond. Then we have a unique time dependent
constant set, A1, Ap, and A3. Thus, these constants are independent of the choice of
- assets. Each of these is called the market price of risk.

Of course, we can imply the same result to the set of constants A1, Ay, A3, and
A4 in section 4.2 and also AJ, A3, and A% in Appendix C.



Appendix B: Decomposition of G - G

(5 is a matrix such that

0 o .
S;o% S Viosovpsy S:05050s3
T _ Q 1/ 72 2 7
G G =, SViosovesy  Vioy Viovospys
S:0s050ss  ViOy0os0vs of

To get G, the following decomposition helps:

S0 00 1 psv Pss S0 00
G.G'= 0 Vioy O || psv 1 pys |- 0 Vioy 0
0 0 o pss pvs 1 0 0 o
Next, we decompose the second matrix of the RHS above
1 Psv  LPss a 0 0 ab d T
£sv 1 Pvs = b ¢ 0 0 c e ,
pss pvs 1 def 00 f



where

{azzl,bz—l—cz-—_l,dz—i-éz—!—fz:l
ab = pgy, ad = pgs, bd + ce = py;

When we assign a = 1, we have
b=psy;d =pgsandc* =1— p2, .

Now we suppose ¢ and f be positive (of course, negative values are feasible. But
we select positive values for ¢ and f as one of the choices),

_ PVs — PSSV PSS (Pvs — PsvPss)?
c=\1-psy. = / ' ,f=\/1— 1.~ p2 ~ Pgs -
1— psy ~ Psv




Then we can write G as follows:

[ Sos 00 a0 0
G = 0 ‘ZG‘V 0 -1 b¢c O
0 0 a3 d e f
HS';O'S 0 0
= | Viovosy Vioy-c O
| Ospss Os-€ o5 f

This argument can be used to obtain a choice of G for the SDE (18) in relation
to the PDE (17) in subsection 4.3 and the same thing applies to the SDE (C.5)in
Appendix C.



Appendix. Subsection 4.2 of the paper
Derivation of the PDE

The case where interest rate is not constant.
But it follows Ornstein=Uhlenbech process.

Very much the same argument as the case of
constant interest rate as long as mathematical
argument concerns.



4. Closed Pricing Formula for the Commodity-Linked Bonds
B(Sta Vt: 5” Fyey 7:)

In this section, we describe a straight extension of Section 2 where the instanta-
neous interest rate changes stochastically, following another Ornstein—Uhlenbech
PIocess.

4.1. ASSUMPTIONS FOR THE PRICING FORMULA OF COMMODITY-LINKED
BONDS B(S,, V;, &, /1, T)

Assume the same situation as we postulated in the Section 2 except that the interest
rate behaves stochastically |

dr; = g(uy — rp)dt + o, - AW, (14)
where W, is another standard Wiener process and correlations are such that

dW, . dW, = ps,dt, dWy - dW, = py,df, and dW;-dW, = p;,dt.



4.2. PARTIAL DIFFERENTIAL EQUATION

In this subsection, we derive the PDE for the pricing function of the commodity-
linked bond B;(S;, Vi, &, r, 7). By using Ito’s lemma, we obtain the following
equation for the i-th commodity-linked bond (i = 1,2, - - -,

N);

d B; * . . :
— = Yni-dt + 05 dWs + 17y, - AWy + 1) - dW; + 1} - W,
i
where
( SeSas+ Fvay + Bue(us — ) + Lig(n, —r) — &
i a i i 3 i
4+l.§ﬁ%526§+5 3£V22+1'8332 of +3- a'gﬂ'
asavSVUSJVPSV + 33353050’5,055 + 333 25 Sosa, psy
W, == +3V53 Vayospys + S‘VB;- Voyo,pv, + aaargagrpar
o1 BI.
i aBl SO'S P BB, VO'V
nS_BS Bi’nVHBV B; '’
0B; o5 ; 03B o,
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With the same standard no-arbitrage argument used in Section 2, we obtain

0B 0B aB
—S5¢(r — 8;) + —V;(ﬁ’v ~ A20v) + "‘"—{K(Ma — &;) — Azos) +

35 oV
B 1 3%B 1 9°B
T r — A r P 2 V2
+ 5, 8 — 1) — Aoy + aszS +t3 R Viovt
1 3’B , 1 3%B 2 3B
- - ——¢ — SV + 17
+2 3520'5 +2 372 o, asav t Vi OsOy Psy + ( )
-+ 5 S + a°B AY + #5 % -+
gT G0, Oy lo312e}
33598 1050350588 355, 19 0s 3vas ¢ vOsoVs
-+ 2°B V.o + o5 i B =20
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where A3, A3, and A4 are the market prices of risk for the value of the issuer, the
net marginal convenience yield, and the interest rate, respectively. Equation (17) 1s
the PDE which every B(S;, V;, &, r;, T) must satisfy.



Appendix

Subsection 4.3.

Detailed derivation of joint
distribution.



4.3. CLOSED PRICING FORMULA

In this subsection, we derive the closed pricing formula of the commodity-linked
bond B(S;, V;, &, r;, T) by applying the Feynman-Kac Theorem. In the calcula-
tion of the expected value of the payoff function (4), we need the joint distribution
function of [S;, V., §;, ] based on PDE (17). From (17), we have the following

SDE:

et

Sf EI(FI - gl)
4 Y: _ Vi(ay - Aoov) dt +
8; k(s — 81) — A30s
T | 8ur =) — Aoy
) _ (18)
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where

(5 _ 9 Pvs — PsvPss - Pvr — PsVPsr

1— p5v, = Z y 8= z

. Psr—pPssPsr— f 8 . .
kh:\/l—Pk%a—fz, i = — ,J=\/1—P§,“82—12

and 21 ‘s Zg ' Z3 ‘s Z4 ., are independent standard Wiener processes.

Next, to transform the rnon- -linear SDE (18) to linear one, let Py = log S; and
J, = log V,. Then we have the following SDEs for P, and J, by applying Ito’s
lemma.

[ D; | B —5:+?':—105%
T, — A — tg2
d .,I _ oy 2?1! zvdt—l—
&y k(s — 84) — Az0p
| 7 | g{y —71) — Ag0r
L (19)
_(.TS 0 0 0 _‘ Zl,r
o oy -2 0 0 Z
n vpPsvy Ov d ~2'I
ospss Os-f os-h 0 1 Zsy

-— ' . -

| OyPsr Or+ & Oyl Or-J _ Zy




Here, we need to solve the linear SDE.

Solution form is given in a text book(Arnold's,for example).
Or, you can just differentiate (stochastically) the solution,
then you will see that it satisfies the SDE.

By solving the stochastic differential Equations (19), we derive the joint proba-
| bility density function of [F;, J;, §;, ] for the time interval [#p, 7'} using theorem
8.2.2 in Amnold (1973, p. 129). By theorem 8.2.2, the SDE

dQ, = (AQ) - Q; +a(1))dr + B(?) - dZ,
has the solution

&7 a(s) - ds + f o1 B(s) - dZ,) (20)

o}

Qr = CDI(QIU +[

o

with the mitial value Q,,, where



with the imitial value Q,,, where

P
. J,
Q = 5

_ 7
Ay =A =
a(f)=a=
B(t)=B =

P,
_ e
1 Qf[}_ 5;0 3
| T
00 -1 1 7
00 0 O©
00—« 0 ’
00 0 —g ]
1.2 .
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K ks — A30g ’
gur_)\'-’-lgr N

Fg 0 0 0
ovpsy oy-e 0 0
ospss os-f oz-h O

_erSr Jr'g Jr‘i Ur‘j

—
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In this solution (20), &, stands for the fundamental matrix of Q,:: A@)-Q, @,
and its inverse are given by

1 0 E(E—R’(f—m) _ 1) 1(1 . E—g(t-*tg)) ]
K g

®, =AW =10 1 0 0 , 21)
00 e—i{(f—tg) 0
60 0 e—&(t—to)

10 l(e"“"“) ~1) 1(1 — g8U—)y
8

K

ol=101 0 0 , (22)
00 gt 0
00 0 p&—1o) i

By substituting (21) and (22) into (20), we have

—ﬁt— _03(37)-‘ X,

fr _ B(m) + .;)?t

5 | v Z |
T LS(JT)_ L W]




For further details, please see the paper.
After some calculus, we arrive at the following.

Ff(x;, yi, r}) is the joint density function such that

o,y 1)) = : 'EXP{—E TZ"EV}
W NN DY 2 !

X
where v = { Vi :l and Y is its variance-covariance matrix which is given by
%

Ve

Var (xr) Oxy Oxr*
Z = Oxy Var{y:) Oy ,
o Oy Var(r})

where



