
2nd. Day.  April 27. (3+2 =5hours)

[Exotic Options.]（European Type)

: (i).Simple Exotics as an introduction.
Pay-Later. Chooser, Supershare, etc. 

Parisian ,Asian,

: (ii).Edokko Options.

: (iii).Stochastic Corridors

: (iv) Weather Derivatives



Section 1. Some Exotic Derivatives, 
And a brief review of Black-Scholes option 

pricing theory

Pay-off  functions identify the derivatives.

: simple exotics with modified pay-off functions.

And some more complicated exotics.

: Outline of Black-Scholes option pricing framework;

PDE approach and Martingale approach.

: Linearity of Pay-off function  Linearity of pricing functions

Brownian quantile is not Markov?



Description (ideas and definitions) of 
simple exotics.

(These will be done on the board .)(no slides; sorry). 

: simple exotics with modified pay-off functions.

Pay-later and Supershare. 

: Chooser. 

:Max(or Min) of two.

:Asian.

: Parisian. 

: Edokko ( application of alpha-quantiles)
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PDE Approach.
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This is the partial diferential equation which the price functions of all the

securities in this market have to satisfy.

A boundary condition C(T, S ) (S
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which is the pay-off of the derivative, 
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Martingael Approach.

Now,  V ( )  and {V , [0, ]} being self-financing

imply that under no-arbitrage assumption, V  copys the price of option 

with pay-off X and that V  must coincide with 
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: Brief descriptions of Black-Scholes option pricing 
framework.

(1). PDE Approach.

Contracts in practice (over-the-counter or exchange-traded) and theoretical 
assumptions.

: underlying assets (or variables)(objectively observable) 

<= assume a stochastic model.

: Time interval [0,T].

: pay-off  <= a function of the underlying variable(s).

: market conditions. 

<= constant interest rate. Infinitesimal trading.

<= no- arbitrage assumption. And Completeness of market.



Memo 

: give brief description of both approaches for pricing, and 
explain importance of Pay-off function and self-financing 
property. 

: remark on linear homogeneity of pay-off function.

: show that average option can be treated by PDF (taking 
from Wilmott’s , or Shreve’s(?) book.)
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Geometric Brownian Motion process.

 (or, ( )), 

where W  is a standard Brownian process.

: r be a constant interest rate.

: [0,T] . option contract matures at ti
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: Pay-off h(S ).  

e.g. Call option: h(S ) max{S ,0}. K be determined in the contract.

T

T T K 
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: Let a price of an option be a function C(t,S ) of time t and the underlying variable S .

It also depends on K and market conditions: r and , but these are constants ( not time-varying).

: look at the

t t
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 stochastice movement of C(t,S ) by Ito-calculus.

( , ) ( , ),  0.

Taylor expansion and Ito-calculus scheme.
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n the same way for any other price functions F,G, 

of financial instruments(derivatives) based on the same S.

 



Let us make a "riskless" portfolio at a time point t [0,T].

Take two arbitrary assets with price functions C and F.

Invest an amount of money  on these assets.

Let w  and w  be investment ratio with w +C F C





 w 1.

w w
w + w C+ 

(please notice that something is implicitly assumed in the following intuitive argument.)

 Then,
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* * *

roperty of the portfolio is assumed here.)

dC
 and  were given under Ito-calculus. Substitute them from above.

Then, we have; (w + w ) (w + w )

The portfolio : (w , w ) that make
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be selected;

w     and    w

(w + w )     : a "riskless" portfolio at a time point t [0,T].
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No-Arbitrage arguement.

(w + w ) ,  and 

Under no arbitage assumption, w + w .

Plug in w  and w  to obtain;

( ).

Thus, 

.

Note that C and F were
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 chosen arbitrarily. 

Hence this quantity is common to all the securities in this market.

Let this quantity be denoted by . 

From the above arguement,  can be dependent on time t, but

for the underlying





 asset, its price S  has =  and =  which are

constants. Therefore, the common quantity  is a constant in this market.
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Now put the definition of  and  into .

Then, we have;
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This is the partial diferential equation which the price functions of all the

securities in this market have to satisfy.

A boundary condition C(T, S ) (S ) , 

which is 
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the pay-off of the derivative, 

will identify what derivative we are working on.

 



( )

In order to solve this PDE for C, 

we use Feynman-Kac Theorem for the current case 

of a Brownian motion with drift r ; it states 

C(t, S ) [ ( ) | ] ,
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r zero-drift Brownian motion,

satisfies;
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with a boundary condition C(T,S ) ( ).
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: Brief descriptions of Black-Scholes option pricing 
framework.

Martingale Approach.

Sｔ , r, [0,T].

Let Bt =ert : Money market account.

2
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 (or, ( ) ))
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: Pay-off h(S ). 
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Put Z (B ) .

By Ito's  stochastic calculus,
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From C-M-G-Ma theorem,  is 

a standard Brownian motion under Q.

So,  (or, ) and E [ ] 0.

Now, note that Z  is a martingale under Q ;

 for 0 u<t<T,
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Take X=max{S -K,0} ( )  and let A [ ] for t [0,T].

Note that for u<t, A [ ] :(= [ [ ] ] )

So, A  is also a martingale under Q.

From Martingale representation theorem, 

there exist
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s a predictable (pevisible) process ={ } such that

dA .

Use this process ={ } to define a portfolio process V={V };

let A  and let V ( , ) S .
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   : A  is a discounted version of V )

Now, let us check that V  is a self-financing portfolio by some calculation.

(self-financing :Def:  dV dS +  .)

(note:  in general, dV dS + "S d
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Now,  V ( )  

and {V , [0, ]} being self-financing

imply that under no-arbitrage assumption, 

V  copys the price of option 

with pay-off X and that 

V  must coincide with the price of the opt
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Design of options and 
derivatives

Pay-off function 
determines/identifies

the feature of option



Remarks for pay-off functions

: (1). Linearity of pay-off corresponds to linearity of prices.

: (2). For h(ST , BT) : has “linear homogeneity”;

h(k・ST , k・BT) =k・ h(ST , BT),

It holds that

h(St , Bt)= St ・(d/dS)h(St , Bt) + Bt ・(d/dB)h(St , Bt)

PDE is linear. Also martingale defined is in a form of 
expectation that is linear

Hence option price must be linear combination, i.e. sum of 
the each solutions for 

Pay-offs ; ST ・(d/dS)h(ST , BT) and BT ・(d/dB)h(ST , BT).



Exotics := not usual

Usual Options = Put and Call

Exotics (options and derivatives)
Path-independent

: Pay-later

: Chooser (path dependent?)

: Supershare

: max of two assets

Path-dependent

: Barrior

: Average (Asian)

: Parisian and Edokko



Journalism. Markets.

:1987. New York. 

Portfolio Insurance (Protective Put).

:2005-2011. Tokyo.

Call(S:K)-3Put(S:K); S is USdollar/Jyen Currency rate.

K=100, S0 =120(?). T=5 years. 120 down to 85.

(newspapers do not write details of contracts, except the 
above. Probably monthly cash-flows:pay-offs are included 
since the option holder are paying monthly.)





Section 2. Exotic derivatives
Based on “Nonparametric Statistics” of Brownian 

Motion.

: “Empirical distribution function” (Fixed level corridor).

: “Order statistics” (Brownian Quantiles, or  α-quantiles).

: Ranks

: Focusing on designs and their ideas.



Section 2. Exotic derivatives Based on “Nonparametric 
Statistics” of Brownian Motion.

: (2-1).[Barrior options]  

Barrior options and Edokko Barrior options. 

(Brownian quantiles: Order Statistics of a path.)

: (2-2). [Corridors].

Stochastic Corridor (Rank Statistics.) and Fixed level Corridor ( 
Empirical Distribution Functions) 

: Forward contracts ( to exchange Fixed and Stochastic). 

: Stochastic Corridor: Spot one and forward starting one.

: Options on Stochastic Corridor. 

: Emphasize an advantageous property of rank statistics.(distributional 
invariance).

: Try for an explicit form of a Forward price with some probability statement.



Standard (usual) Barrior Options.

.

(taken from a book Miura(2000) (in Japanese)
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Standard (or, usual) Barrior Options

Let the price function , V(t, S ).

Set a barrior a>0. a<S .

( Knock-out; V( ,a)=0. inf{ : a,0<t<T})

This V(t, S ) saisfies: the following PDE in the area of "not k
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pricing function by Calculating the expectation.]
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Calculation.

Note: [ max{ ,0} ] 
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                                            where logS ,  and log
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Memo: probability density function of . 0<t< T. (note. P{ } 0)
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[Memo from last Wednesday.]
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Edokko (Barrior) Options

From Fujita & Miura (2002)
: Idea is to wait for a while before knocking out, 

rather than knocking out right away when S touches 
the barrior.

This will make a manipulation less easy (or difficult).

: Then, how long do we wait?

We need to define How it is determined?



Equivalent to options with a K.O.condition ;

m( :[0,T]) < A for a prefixed level A.; European type option.

Note that m( :[0,t]), t [0,T] is a stochastic process.



 



{ , }
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Remark.

1
Regard that F(K)= ( )  is a stochastic

process F(t: K) with time t.

We already know P{F(t: K) } for x [0,1].

Since F(t: K) is nonnegative and 

has continuous and nondecreasing path in

t

K uI S du
t

x



 



 t,

we may easily define a first hitting time of  F(t: K) to a level x.



Another Remark.

Brownian quantile is not Markov ?.

[ Homework. Discuss if a Brownian quantile is Markov.]

Look at m( :[0, ]). Given it at time t, can we know m( :[0, ])

only with the information given 

t t dt  

at time t and with S  , u [t,t+dt] ?

Note. As for Asian option, the average A(S:[0,t]) can be treated

 as Markov by making two dimentional stochastic process (S , A(S:[0,t]).

Therefore, Asian option can 

u

t



be discissed with PDE approach

 (for two dementional stochastic process). 





Parisian <=> Remains CONTINUOUSLY under the level A

                    for more than a prefixed amount of time D.

Edokko <=> Remain under the level A 

                     for -portion of th remaining  time [  , T]A



Pricing of Cumulative Parisian Edokko
option.

Use the probability distribution we 
have already discussed.

























Stochastic Corridor
:Fixed level corridor.

: Stochastic corridor.

: Forward-starting Corridors (a fixed one and a stochastic one)

: Forward contract to Exchange the above two.

(for a situation where a suitable K is not easily determined.)

: Options on fixed or stochastic corridors.

Prices of these derivatives can be calculated in a straight 
forward manner in our case. However, in case where S 
follows Levy process or any other useful process, other than 
Geometric Brownian motion, I do not know if we can 
calculate it. Ornstein-Uhrenbeck process  => first hitting time 
seems discussed.



Fixed level corridor (or, fixed corridor for short.)

















































Section 3. Weather Derivatives

: Underlying variables are not tradable. Incomplete Market 
models.

: Taking from Mark Davis’s papers.

: Marginal rate of substitutions.

: How about a forward starting Weather derivatives; 
conditionally more accurate forcasting of the weather (?).

Can we use rank to use an advantage of rank statistics.
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Dear Students in this class,
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If you would like to read them, please let me know by e-mail.

Ryozo Miura



Homework

: (1). Derive the pricing function of the standard 
(usual) Barrior option: perform the calculation.

: (2). Discuss if Brownian quantile is a Markov 
process.

: Please submit, by e-mail, your homework by Monday 
noon (May 2) so that I can get them printed.





Appendix

Incomplete attempt for weather 
derivatives and a firm value with 

probability of default.



An attempt (unpublished work: incomplete)

Interested in 

: how much the weather derivative helps the 
value of a firm.

: how many contracts a firm should buy in order 
to decrease a probability of default?
































