2nd. Day. April 27. (3+2 =5hours)

[Exotic Options.] (European Type)

: (1).Simple Exotics as an introduction.
Pay-Later. Chooser, Supershare, etc.

Parisian ,Asian,

: (i1).Edokko Options.

: (1i1).Stochastic Corridors

: (iv) Weather Derivatives



Section 1. Some Exotic Derivatives,
And a brief review of Black-Scholes option
pricing theory

Pay-off functions identify the derivatives.

: simple exotics with modified pay-off functions.
And some more complicated exotics.

: Outline of Black-Scholes option pricing framework;

PDE approach and Martingale approach.
: Linearity of Pay-off function < Linearity of pricing functions

Brownian quantile is not Markov?



Description (ideas and definitions) of
simple exotics.
(These will be done on the board .)(no slides; sorry).

: simple exotics with modified pay-off functions.
Pay-later and Supershare.
: Chooser.
:Max(or Min) of two.
:Asian.
: Parisian.
: Edokko ( application of alpha-quantiles)



PDE Approach.
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This is the partial diferential equation which the price functions of all the

securities in this market have to satisfy.

A boundary condition C(T, S;) =h(S;) ,

which is the pay-off of the derivative,

GSZ—rC 0.

Martingael Approach.

Now, V. =B A =B (B, *X)= X and {V,,t €[0,T]} being self-financing
imply that under no-arbitrage assumption, V, copys the price of option
with pay-off X and that V,, must coincide with the price of the option

at time zero.

V, = ByA = A, = Eg[B, X |1 = Eo[B; ™ max{S, -K,0}{ F;]

(—* 2)T+oWy

=e"" Eo[max{S,e ? " K O}]



: Brief descriptions of Black-Scholes option pricing
framework.
(1). PDE Approach.

Contracts in practice (over-the-counter or exchange-traded) and theoretical
assumptions.

: underlying assets (or variables)(objectively observable)
<= assume a stochastic model.
: Time interval [0,T].
: pay-off <= a function of the underlying variable(s).
: market conditions.
<= constant interest rate. Infinitesimal trading.
<= no- arbitrage assumption. And Completeness of market.



Memo

: give brief description of both approaches for pricing, and
explain importance of Pay-off function and self-financing
property.

: remark on linear homogeneity of pay-off function.

: show that average option can be treated by PDF (taking
from Wilmott’s , or Shreve’s(?) book.)



S, :te[0,).
Geometric Brownian Motion process.

1
,u——az )t+

S, =S.e 2" (or, dS, =S, (udt + odW,)),

where W, is a standard Brownian process.

. r be a constant interest rate.

. [0,T] . option contract matures at time T.

. Pay-off h(S; ).

e.g. Call option: h(S;) = max{S; — K, 0}. K be determined in the contract.



: Let a price of an option be a function C(t,S,) of time t and the underlying variable S,.

It also depends on K and market conditions: r and &, but these are constants ( not time-varying).
: look at the stochastice movement of C(t,S,) by Ito-calculus.

C(t+dt,S,,)—-C(t,S,), dt > 0.

Taylor expansion and Ito-calculus scheme.
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Then, we write; dFC = pu.dt+ o dW.,.

We can write in the same way for any other price functions F,G,
of financial instruments(derivatives) based on the same S.



Let us make a "riskless" portfolio at a time point t [0, T].
Take two arbitrary assets with price functions C and F.
Invest an amount of money IT on these assets.

Let w. and w. be investment ratio with w_+w_ =1.

IT=w_IT+w, I = WéH C+ W;H F

(please notice that something is implicitly assumed in the following intuitive argument.)
Then,

dIl, :(H”dt_nt,dt—)O) L (W 1l dC+ tdF)_ d—C+WFd—F
I1, . F C F
(self-financing property of the portfollo Is assumed here.)

dC

F
— andd— were given under lto-calculus. Substitute them from above.

L= (W pte+ W, g2 )dt+ (W0 + opw, )dW,
t

The portfolio IT": (W', w') that makes (W.o.+ oW, ) =0 under (w.+w,) =1
be selected;

* (oX *
W =—- and w. =

*

dH * * - - - -
—+=(W gt W g )dt  :a'riskless” portfolio at a time point t [0, T].

t



No-Arbitrage arguement.
dIT . . dI1
H—*t:(w C/’lC+W F/’IF)dtv and H*t = rdt

t t

Under no arbitage assumption, W .z + W 2. =T.

*

Plug in w'. and w™_ to obtain;

O e —Oc e =T (O —O¢).

Thus,
Mc —V _ e =T
o Ok

Note that C and F were chosen arbitrarily.

Hence this quantity is common to all the securities in this market.

Let this quantity be denoted by A.

From the above arguement, A can be dependent on time t, but

for the underlying asset, its price S, has x, =4 and o =oc which are

u—
O

r IS a constant in this market.

constants. Therefore, the common quantity A =
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Now put the definition of x. and o into

Then, we have;
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that is;
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Recall that 1 — Ao =r, then we finally have;

£+£r8t+1 822 oS, —rC =0.

ot 0S, 2 0S,

This is the partial diferential equation which the price functions of all the
securities in this market have to satisfy.

A boundary condition C(T, S;) =h(S;) ,

which is the pay-off of the derivative,

will identify what derivative we are working on.

o?S2-rC =0.




In order to solve this PDE for C,
we use Feynman-Kac Theorem for the current case

of a Brownian motion with drift r ; it states
C(t, S,) = E[h(X; )e_r(T_t) | X =51,

dX . : : .
where —+ =rdt+odV, , and V, is another zero-drift Brownian motion,
t

satisfies;

oC oC 10°C
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ot 0S, 2 0S,

with a boundary condition C(T,S;) =h(S;).

5?82 -rC=0



: Brief descriptions of Black-Scholes option pricing
framework.
Martingale Approach.

S, 1, [0,T].
Let B, =e" : Money market account.

(QQ,F,P) and {F}

S, =S, ™ (or, dS, =S, (1 +%02)dt + S, dW))

. Pay-off h(S; ).



Put Z, = (B,)™'S, = S,e* "™,
By Ito's stochastic calculus,

07, = Z {(u—r)dt + odW, +%02dt}:zt{(u r +%02)dt +odW )
1,

U—-r+—o
=Z.cd | W, + 2|,

_152
Let A = 2 and define Q by d_Q — eMT 2
9 dP



From C-M-G-Ma theorem, W, =W, + At Is

a standard Brownian motion under Q.
L °%t+o ;
So, %:adwt (or,Z, =e 2 t VV)and EQ[%FO-

t t

Now, note that Z, Is a martingale under Q ;
for 0 < u<t<T,

—Eazu +0Vvu\—_§gz (t—u)+o (W;-W,)

E,[Z,|F,1=Egle F,]

u

152 (t—u)+o (W, -W,)

=Z E,le ? F ]

u

=Z,.1



Take X=max{S, -K,0} (€)F; and let A = E,[B, X |F] forte[0,T].

Note that for u<t, A, = E;[A|F,] :(=EQ[EQ[BT_1X‘ FlF]1)

So, A, is also a martingale under Q.

From Martingale representation theorem,

there exists a predictable (pevisible) process ¢={¢,} such that

dA, =¢dZ..

Use this process ¢={¢ } to define a portfolio process V={V.},

let w, = A, —¢Z, and letV, =V (4,y,) =4S, +v.B,.

(Note that A, = B, 'V, or V, = BA : A, is a discounted version of V,)
Now, let us check that V, Is a self-financing portfolio by some calculation.
(self-financing :Def: dV, =¢dS, +y,dB, .)

(note: in general, dV, = ¢,dS, +y,dB, +"S,d¢ +d@dS, + B, dy, +dy,dB, ")



Start with V, = B A
dV,=d(B,A)=BJdA, + AdB, ,
(- dBdA, =0)
=B¢dZ +(¢Z, +v,)dB, ,

(wdA, =¢dZ and A, =¢Z, +y,)
=¢,(B,dZ, +Z,dB,) + v, dB,
=¢d(Z,B,)+ v, dB,
=¢4.dS, +y,dB, .



Now, V; =B, A =B, (B, *X) =X
and {V,,t €[0,T]} being self-financing

Imply that under no-arbitrage assumption,

V, copys the price of option

with pay-off X and that

V, must coincide with the price of the option at time zero.

Vo=BA =A = EQ[BT_lx ol
— EQ[BT_l max{S, -K,O}‘ o]

(16T 40

e TE [max{S,e 2 -K,0}






Design of options and
derivatives

Pay-off function
determines/identifies

the feature of option



Remarks for pay-off functions

: (1). Linearity of pay-off corresponds to linearity of prices.

: (2). For h(S;, B;) : has “linear homogeneity”;
h(k*S;, k*B;) =k* h(S;, B;),

It holds that

h(S,, B,)=S, =(d/dS)h(St, B,) + B, *(d/dB)h(S, , B,)

PDE is linear. Also martingale defined is in a form of
expectation that is linear

Hence option price must be linear combination, i.e. sum of
the each solutions for

Pay-offs ; S; =(d/dS)h(S;, B;) and B, =(d/dB)h(S;, B;).



Exotics := not usual

Usual Options = Put and Call

Exotics (options and derivatives)

Path-independent

: Pay-later

: Chooser (path dependent?)
: Supershare

: max of two assets
Path-dependent

: Barrior

: Average (Asian)

: Parisian and Edokko



Journalism. Markets.

:1987. New York.
Portfolio Insurance (Protective Put).

:2005-2011. Tokyo.
Call(S:K)-3Put(S:K); S is USdollar/Jyen Currency rate.
K=100, S, =120(?). T=5 years. 120 down to 85.

(newspapers do not write details of contracts, except the
above. Probably monthly cash-flows:pay-offs are included
since the option holder are paying monthly.)






Section 2. Exotic derivatives

Based on “Nonparametric Statistics” of Brownian
Motion.

: “Empirical distribution function” (Fixed level corridor).
: “Order statistics” (Brownian Quantiles, or a-quantiles).
: Ranks

: Focusing on designs and their ideas.



Section 2. Exotic derivatives Based on “Nonparametric
Statistics” of Brownian Motion.

: (2-1).[Barrior options]
Barrior options and Edokko Barrior options.
(Brownian quantiles: Order Statistics of a path.)

: (2-2). [Corridors].
Stochastic Corridor (Rank Statistics.) and Fixed level Corridor (
Empirical Distribution Functions)

: Forward contracts ( to exchange Fixed and Stochastic).
: Stochastic Corridor: Spot one and forward starting one.
: Options on Stochastic Corridor.

: Emphasize an advantageous property of rank statistics.(distributional
invariance).

: Try for an explicit form of a Forward price with some probability statement.



Standard (usual) Barrior Options.

(taken from a book Miura(2000) (in Japanese)



Standard (or, usual) Barrior Options

Let the price function, V(t, S,).

Set a barrior a>0. a<S,.

( Knock-out; V(7,a)=0. z =Inf{t: S, <a,0<t<T})

This V(t, S,) saisfies: the following PDE in the area of "not knocked out *,
oC N oC rSt+1 82(2
ot 0S, 2 0S,
V(t,0)=0.lim,_ V(,S)=S.)

V(t,S,) =E[e”" max{X; —K,0H{r >T}X, =S,], where we let a<K.

%2 —rC =0.

S, 5t . al
=C(t,S,)- () C(t,—)
a S,
[Homework : Derive this pricing function by Calculating the expectation.]



Calculation.
Note: E[e™"™" max{X, — K, 0} X, =S,]
=E[e""" ™ max{X; - K,0}{r >T} X, =S,]+
E[e™" Y max{X; - K,0}{r <T}X, =S/]
and the second term is calculated as;
j: E[e"“ max{ae’™ ™) _K 0}z =u] g(u:x,b)du,
where logS, =X, and loga=Db

=LTC(T —u,a:K,r,o) g(u:x,b)du.

Memo: probability density function of 7. 0<t< < T. (note. P{z >T}>0)

\x—b\ _(x=b—pt)?
g(t:x,b) = e 2t | wherelogS, =X, and loga=b




We now record various probabilities associated with Brownian motion: 5

(6) P( sup S(s)> b) =2P(N(0, t)>b)

O=xs=1

t b ( bz)
= 1. exp| —— ] ds forallb>0
.[u J2s? P 2s
= F.(1)
} . [ - ~
where 7=inf {s: S(s) = b}; AT S tl‘,!‘ﬁ’% .S H‘:u [s) *

[Memo from last Wednesday]

o 1 o
2P(N(0,t) >b) =2 thx =€ 2sds
L tb2 b 1
by change of variable: s=—-, then, - ds = —=dx.

X2 ] ] 282 \ﬁ



Edokko (Barrior) Options

From Fujita & Miura (2002)

: Idea is to wait for a while before knocking out,

rather than knocking out right away when S touches
the barrior.

This will make a manipulation less easy (or difficult).
: Then, how long do we wait?

We need to define How it is determined?



EXAMPLE 2.2. Delayed Barrier Option (Linetsky, 1999) = Cumulative Parisian
Option (Chesney et al., 1997).

This option is a down-and-out option that is knocked out when the occupation time
below the barrier A exceeds a given fraction «, 0 < @ < 1 of the maturity time 7.
Using our framework, for ¢ (0 < o < 1),

y
f 1(~00,A](Su)du :=> G-'T] -
0

Rrxo. = [f

In other words, we remark that the condition which the o percentile of the
underlying asset S,(0 < u = T) becomes less than A is equivalent to this K.O.
condition.

Equivalent to options with a K.O.condition ;
m(c:[0,T]) < A for a prefixed level A.; European type option.
Note that m(«:[0,t]), t €[0,T] Is a stochastic process.



Remark.

Regard that F(K):%j'; I, «:(S,)du Is a stochastic

process F(t: K) with time t.

We already know P{F(t: K) < x} for x €[0,1].

Since F(t: K) Is nonnegative and

has continuous and nondecreasing path in t,

we may easily define a first hitting time of F(t: K) to a level x.



Another Remark.

Brownian quantile is not Markov ?.

[ Homework. Discuss if a Brownian quantile is Markov.]

Look at m(« :[0,t]). Given it at time t, can we know m(« :[0,t +dt])
only with the information given at time t and with S, , u € [t,t+dt] ?

Note. As for Asian option, the average A(S:[0,t]) can be treated

as Markov by making two dimentional stochastic process (S,, A(S:[0,t]).
Therefore, Asian option can be discissed with PDE approach

(for two dementional stochastic process).



EXAMPLE 2.3. Cumulative Parisian Edokko Option.

This option is a down-and -out option that is knocked out when the occupation
time below the barrier A exceeds a given fraction «, 0 < o < 1 of the remaining
caution tirne T — t4. Using our framework, for (0 < a < 1),

t
Ryxo = {f f 1(—co,41(Su)du 2 (T — 'EA)} :

A

f,'A 1 (—co,a) (Su)du
T—‘L‘A

REMARK 2.1.

2o &= a-percentile of S,(ta SusT) S A

In other words, we remark that the condition which « percentile of the underlying
asset S,(z4 S u £ T) becomes less than A is equivalent to this K.O. condition.

EXAMPLE 2.4, Parisian Option (Chesney et al., 1997).

A Parisian option becomes worthless if the underlying asset reaches a prespecified
level A and remains continuously below this level for a time interval longer than a
fixed number D. Specifying Ry o, for a positive constant D, Rg o. = {f|the length
of the current excursion below under the level A straddling ¢ 2 D}.



EXAMPLE 2.5. Parisian Edokko Option.

A Parisian Edokko option becomes worthless if the underlying asset reaches a
prespecified level A and remains continuously below this level for a time interval
longer than a fixed number a{(7 — 7,) for €(0 < ¢ < 1). Specifying Rg ¢, for
(0 < o < 1), Rg.o. = {t|the length of the current excursion below under the
level A straddling ¢ 2 «(T — 14)}.

Parisian <=> Remains CONTINUQOUSLY under the level A
for more than a prefixed amount of time D.
Edokko <=> Remain under the level A
for a-portion of th remaining time [z, , T]



Pricing of Cumulative Parisian Edokko
option.

Use the probability distribution we
have already discussed.



3. Pricing

We can obtain closed form expressions of the prices of the above-mentioned exam-
ples in Black Scholes model. In this section, choosing ‘cumulative Parisian Edokko

nﬁf‘;ﬁﬂ’ A ffrrrm beameale TP o1.1- A"

o e e e e e 7 N e F R tr.l.;\fj.l.l.& AVFLLALLLALCEY,
Let X (¢) be a continuous stochastic process.
We put Ax (¢, x) = 1 [ Li—oo.1(X (s))ds, where

1if y<x
]'('—DG,X](y) — [ 0 lf y ;x'

Since Ax (¢, -) is increasing, the inverse function m x(f, -) exists i.e.

Ax(t,mx@t, )y =a 0 <a < 1), my@t, Ax(t, x)) = x,
Ax(t,x) > =my(t,a) < x

hold. Miura (1992) called options related to my (2, o) x-percentile options.

1ree tlnd o aae Fa 1 IAN ut e s



hold. Miura (1992) cailed options related to m x (¢, o) a-percentile options. See-
ing that my (¢, 1/2)= the median of X0 <€ 5 € 8) and my(r, 1 — 0 =
maXogsge X (5), we can observe that a-percentile options are based on order sta-
tistics and have merits that are hardly affected by extreme values. For pricing of
a-percentile options, see Akahori (1995), Dassios (1995), Embrechts et al. (1995),
Fujita (1997, 2000), and Yor (1995). We use this c-percentile as stopping condi-
tions of derivative contracts. In this sense, we may call Example 2.2 and Example
2.3 a-percentile barrier options.

- -
- e T o war

Let W; denote a standard Brownian motion. First we prepare the following
theorem about the joint density of Brownian motion and its occupation time. This
formula is obtained by Fujita (1997) to price the a-percentile option with a pay-
off max (St — ms(T, «), 0). This result is equivalent to an ocommation time Taw



THEOREM 3.1.
t
P(W, € da, f L—oo,00(Ws)ds € du)

o S 2(:—5)
f, me ds)dadu - - -fora > 0
(s ane E= ds)dadu - - - for a < 0.

Proof. We put that f (¢, x) = E[lg 400 (x + W,)e‘ﬂff; oo o(x+Wolds | (fr g
0, 8 > 0).
Using the Feynman-Kac Theorem, we have:

of  198f
ot 28x2

Taking Laplace transforms of both sides, and denoting: F(£,x) = T dte¥
f (&, x), we obtain:

ﬁl(—c;o,(}](x)f f(0,x) = Iia,+oo) (x).

32
ooy () +EF = ——i  Bleen (0 F

Solving this ordinary dlfferentlal equation and considering boundary conditions
at 0 and a, we obtain

e—V2Ea
VEWE + JEF B).

foy =

Then, we see
—fO) _ 5 e
da NE+JVETB




Solving this ordinary differential equation and considering boundary conditions
at 0 and a, we obtain

(0) e
1= VEWE + JETB).
Then, we see
—2£(0) e /B

da I+J§T

I

Il

e

é‘ﬁh

Yl =

[}

T
[—
[

™|
-
[

’b)

|

YIRS
|

[

o

Lt

o
’jj"]m
£,
Ch

~—

ff e P4 du fI a eh%ds .
0 w 21m+/53(t — 5)3

This shows that fora > 0, P(W, € da, f{} L(—o0,00(Ws)ds € du) = (fu 2:,1,\/53(:_3)3
al

e 0 ds)dadu. Similarily we obtain the joint density function for a < 0.




REMARK 3.1.

Chesney et al. (1997) got the same results by another approach. Also Karatzas and
Shreve (1991, p. 423, Prop. 3.9) obtained the similar results of this Theorem.

We denote the joint density function of (W, fu 1(—co,01{Ws)ds) by
T Wi, i o001 Wyt (@ 1)

Applying Girsanov’s theorem, we get that the joint density function
B(XET [ 1oy (X2% sy (@ %) Tor 2 Brownian motion with drift (¢ W, + ut = X*)
18:

_ek a
B, J3 Loy (X1)ds) (s X) = € 277 et (I/U)f(ané L(—c0,0)(Ws)ds) (;’ x) '

From we can determine the price of Cumulative Parisian Edokko Option under
the BIack Scholes model.



From we can determine the price of Cumulative Parisian Edokko Option under
the Black-Scholes model.

Under the risk neutral measure in the Black-Scholes model, we take the S.D.E.
which the underlying asset price S(z) satisfies as follows:

de — rS;dt + US;dW;, S[} = S,

where r = the instantaneous risk free rate, o = the volatility.
Then we know that

St — Se° W;+(rﬂ—%—crz)r

1 2
— SeXr—ia' - (I).



We denote a payoff at maturity 7" as f(Sr). Considering stopping condition
Ly(r.0)<a> We have that a payoff of Cumulatine Parisian Edokko Option at the
maturity 7 (1 — Lny(r—z4,00<4) f (ST) Where we assume that A < S. Then the
price of Cumulative Parisian Edokko Option (= C(T, S, o, x)) is obtained by
C(T: S: &, A) - E(e_rT(l — Imx(T‘—-fﬁ,Q’)éA)f(ST))‘

122

Remarking that E (™7 f(S7)) = e~T [*° f(Se("“ﬂ}”z}””)%—dx =

Cy(7, §) = usual B.S., itis enough to calculate that E (e~ Loy (T—a,ey < F(ST)) =
Cg(T, S, &, x).



So, it is sufficient to obtain the joint density function of (S, fGT 1(—o0,41(S5)ds,

TA).
T
(ST: / 1(*DO,A](SS)dS)
0

T
_ (Sg(rﬁ(lf'Z}Uz)T+6WT’ / (oo A](Se(r—uxz)az)swws)ds)
0

T
—(1/2)02),0 _ 2
(SEXT ,/0 1(_oo.log (475 (X ¥~ (/2e )’a)dé")-

|



We put 74 = inf {¢|S; =} = inf {f| X"~ 4/2"7% — 1og A/S}. Then, conditioning
T4 = U, we have

T
(ST, f 1(—c0,A] (Ss)d-‘s‘)
0 TA=U

T 2 2
r—(1/De %) 0 _ lr—(1/2ed)0 r—(1/De D e (1260
= (ABXT Xu ,f l(—o,4)(AC™ i )dﬁ')
4

TA=U

alr—{1/2)c2),0 T Ad_ 2
(Aex T—u : f 1 (00,00 (X /2 )'d)dS)
u TA=U

o (r—(1/2)52), T—u Al 2
- (A{:‘XT-—H ", f 1(—oo,0)(RY ~H/2° )‘a)ds)
0

T

Ta=HN

where we put X, = X,— X, and we remark that X, is independent F, = o {X,; s <
i}

1



S0, we see that

Co(T, S,a, A) = E€™ 1 (r—cpay2a F(ST))
= ¢ " TE(E(pgr—csmysaf (S7)Ta))

T
= e | E(lstr-uaysa F(SPITa = whe, ()
0

T
—rT a
= e’ F(Ae", b)Y —ameto (T-u (r—{1/2)02)
[:} fj;iﬂ(?‘ﬂu) , (Xif'—u)r T T Voo m (XS 7Y ds)

 (a, bydadbh, (u)du,

where we recall the known result 4., (s) = the density function of 4., ='ﬂrﬂL ’::%l

—(log A/S—(r—(1/2a2)s)2
e 2302

That is, the Price of Cumulative Parisian Edokko Option = B.S. — Ca (T, S,
o, A).







Stochastic Corridor

:Fixed level corridor.

: Stochastic corridor.

: Forward-starting Corridors (a fixed one and a stochastic one)
: Forward contract to Exchange the above two.

(for a situation where a suitable K is not easily determined.)

: Options on fixed or stochastic corridors.

Prices of these derivatives can be calculated in a straight
forward manner in our case. However, in case where S
follows Levy process or any other useful process, other than
Geometric Brownian motion, | do not know if we can
calculate it. Ornstein-Uhrenbeck process => first hitting time
seems discussed.



Fixed level corridor (or, fixed corridor for short.)

Su = Spe* = SpeFt s for 4 € [0, 77, (1)

where Sp is the random initial price and W, is a standard Brownian motion
with zero mean.

Now, the corridor is defined as follows. For any fixed constant K, let

T
F(K) = % fo I{S, < K}du. (2)

This is just a continuous-time version of the empirical process for stock
prices during the time interval [0,7). It is a measure of the proportion of
time the stock prices stay below the given fixed value X during the time

interval [0,7). We will call it a fixed-level corridor or fixed corridor for
short.



This quantity depends on the path of stock price, and it can be de-
termined only at the end of the time interval. For example, consider
an application in discrete-time setting such as the currency exchange rate
derivatives. This statistic counts the proportion of days the exchange rate
stays below the given fixed level X, and the pay-off (which is the value
of the derivative at the time of exercise, or of expiration) of the deriva-
tive (contract) may promise to pay to the holder of the derivative the
amount of money proportional to the statistic. This is called 2 corridor
option. These corridors could also be used in principle for other applica-
tions such as weather derivatives to count the number of days where the
daily-temperature stays below a fixed level.
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In this chapter, we define and study the propkeri;iejs of a new derivative
called stochastic corridor. Specifically, consider a fixed day t with stock
price S;, which is random. Define the rank process

T
R(t) = /ﬂ I{5. < S.}du. (4)

This has a similar interpretation as the fixed corridor except that the fixed
value of K in the fixed corridor has been replaced by 5; which is stochastic.
Note that R(t) does not depend on Sy since

I{8, < 8} = I{Soe** < Spe™*} = I{X, < X, ).

The fixed-level corridor and the stochastic-level corridor both can be used
as payoff of derivatives.



The following lemma plays a key role at several parts in this chapter where a
calculation is encountered for an expectation of the nonparametric statistics
such as a fixed corridor or a stochastic corridor. The proof can be found in
Fujita{1997) or Fujita & Miura(2002,2004). See also the handbook Boredin
& Salminen(2002) for the result without proof.

Lemma 1. _

P(W, € da, [ I{W, < 0}ds € du) = ( fj(h;ﬁeﬂ?‘%rds)da du,
fora > 0.
P(W, € da, [{ I{W, < 0}ds € du) = ( fﬂ“(w—ﬁeﬁ—fcﬁs)dﬂ du for

a < 0.



4 Corridor Swap

The fixed corridor F'(K') and the stochastic corridor R(t) both can be used
separately as payoff of derivatives. Their prices at time 0 are given respec-
tively by
e~ BolFR7), ™™ Eo[Ry7
in a Black-Scholes market.
We go further to define a “swap” or an exchange of the two derivatives
which requires appropriate choice of the value of XK. The payoft of the swap

contract is F'(K) — R(t). This price at time of the contract is zero so that
we have, as usual,

T ) T
0= e"TEy| / I{S. < K}du — / {8, < S}
0 0

Thus, the constant K has to be chosen to satisfy the equation

By /U ' I{S, < K}du] = Eq| /0 Tr{su < 8 }du).



Note that righthand-side is a non-negative bounded constant less than 7',
and the lefthand-side is a strictly increasing continuous function of K rang-
ing from zero to T". So there must exist a constant K which satisfies the
above equality.

It is necessary to have an explicit functional form of these expectations
in order to obtain the numerical value of K. They can be obtained by using
the distributional results in Section 2.



5 Corridor Option

It is possible to define Put-type and Call-type options using the fixed and
stochastic corridors. Their pricing can be done in a straightforward manner
since it does not require any further distributional results.

We define a corridor call option on the stochastic corridor with the fixed
level corridor as its exercise value. The pay-off of the corridor call option
is Vo,r = max(R(t) — F(K), 0). Similazly, the pay-off of the corridor put
option is Vpp = max(F(K) ~ R(t), 0). The prices of these Call and Put
at time zero in the Black-Scholes model are given by Voo = e~ Ey[Vo 7]
and Vpo = e "% Ey[Vp 7] respectively. The expectation for Call option can
be calculated as follows,



Theorem 1.

X

Veo = E_TTEU [Br’d] = e_rTED [E{r WT—(ﬁ)E%BD,a]

where
B™ = B} + B}*
= B + Blz + Byl + By
and
B> = Bl + Bf + Byf + By,
where

T T
BM° = max{ / I{S. < Si}du— f I{S, < K}du,0)
g 0

™ T
_ f I{S. < Si}du-I{S, > K} - / I{S, < K}du-I{S, > K}
0 0

A
— Biha + Bgtﬂ'



T T
_ / I{Sy < Se}du-I{Sy > K} ~ / I{S, < K}du-I{S; > K}
i 4

t t
+ / I{8, < S,}du-I{S, > K} - f I{S. < K}du - I{S; > K}
0 0
= BLY + BYS +BYY + By

. The terms above are calculated in the following lemmas.



Lemma 2.

T T
Eo[B] = Byl ft I{S. < S} du — /t I{S. < K}du} - 1{S, > K]
27, T—t

= BylesZr-(2)" I3t I{Z, < 0}dv] - Bo[I{W, > A" Y]
0

T—1
_[ {Eo[gﬁz'r‘*‘_(g)ﬂ# I{Z-u <7t
{Snert-l-uw}f(} 0

+ow + log -?}dv Wi = w] }n(w : 0,t)dw
0



Proof. Define A" = L(log gf‘- —~rt)), and Z,_, = W, — W,. Note that

T o

W and W,, — W; are independent.

T
BJY = f I{S, < S,}du-I{S, > K}
t
T
= / I{’I‘(‘h‘. — t) -+ G'(Wu_wf-) 5-: D}du : I{m > AT'-,G}
it
T—t
= f Hru+o02Z, < O}du - H{w, > Ar’a}
0
' T
By — / I{S, < K}du} - I{S, > K}
i
: T
B f H{Soe™ " < K}du} - I{Spem ™ > K}
i

T
= / Hr{u—~t) + o(W,, — W) < —rt — oW, +1log ?—}dﬂ
¢ 0
X I{W; > Ar,r:.r}
T—1 K
= f IH{rv+o2Z, 5rt+am+lng-§}dv-f{W; > A9},
0 0

(where v = u ~ £)



In the last step, note that log (%;-) = —rt — oW} + log éﬁ- < 0in {W, >
A"} = {5, > K}. Now,

Eo[By°] = Eo|By7] + Eo[BT5]
r r3 Tt Tt
= BylesZr—~(3)'T5 f I{Z, < O}dv] - BolI{W, > A™}]
0
27, T—t _
_/ {Eqgles2r-—(3) ?—g—/ {7, < (rt
{Sue"t'i"“"}f‘i'} 0 o
+ow + log SE)}dv Wy = w| }n(w: 0,t)dw
0
T r 2.t T—t
= EylesZr——(5)' %5 f I{Z, < 0}dv] - Bo[I{W}; > A7)
0

_f {Et::[efz'*'"-"'(f)2
{Sueﬂ'l'ﬂw}ff}

T—1
+ f I{Z, < 0}d) |[W; = w] }n(w : 0, £)dw,

T'z_t (T

where.r = inf{v : 2, > A*,0 < v < T}, A = L(rt + ow +log =) and
n(w : 0,¢) is the density of the normal distribution with mean zero and
variance . 0



Lemma 3.

Eo[BL?] = Bl fu I{S, < S,}du - fo 1{8. < K}du} - I{8, > K]
= Byle52—(2)4 f t I{0 < 2,)dv - I{Soe? > K}]
0

: i 2, t—s
_/ﬂ EU[E'E(Z=-*¢+%1°E(EE))T(§) f(s+/n 1{Z, < 0}dv)

X I{Z;_s > 0} |7 = s]g(s)ds

Proof. We rely on Cameron-Martin theorem to reduce the calculations
for the case p # 0 to that for the case & = 0.



BalB5S) = Bl [ 1{8 < Sdu-1(5. > K}

i
= By f I{Spem oW < GoemtteWeldy . T{Spemt+oWe > K1)
0

t
= Eq f {0 <rv+02Z,}dy - [{Spe™t7% > K]
0
(where Z, = W; — W,_,,, and note that Z, = W;)
kL ry2 t
= Eole52—(5)'% / I{0 < Z,}dv - I{Spe? > K}]
0

r

— o fry2s
- -/-/105(3‘“‘-}&-:@ ﬂ{y{teax (=) 2yf(zhf; I{Z.<0}ds)(E, ¥ )dyde.
I} '



BolB53) = Bl | 118u < Kyduy - 1(5. > K}

t . 1 K r 1 K
= Eu[{fn H{Zu+W, < —log («g{}-)}dfu.} T{ St We> —log())

Cl |

¢
— Iwe—( )2‘% < 1 ..IE. . l E
Eyle fﬂ H{W, < - log (SD)}du. HW, > - Iog(su)}]

)4 (r +/t I{W, - W, < O}du) - I{W, > élog(%)}]

a4

= ED[Eﬁwt_(

(where 7 = inf{u : W, > élng(K/Sg),O <u<t})



2

- i—r
— EU[EF(Zt,—f'i'% IUE(:(,'{%)} ( E T+/ I{Z {:U}dﬂ) I{Zt—'r :}0}]

i 1 K ¢ i—s
_ f Eu[e{;(zt-s+;‘-ng(ﬁ))—(E) E(S _l_-/ I{Zﬂ {_: {]}d-y)
0

0
X I{Zy_5>0} |7t= s]g(s)ds
(where Z, = Wy4y — Wi, g(-) is the probability density function of 7.

Note Z¢_7=Wt W. “Wt"*""log(;;))

_ / / f ' o5 =3 1s(H))~(2)"4 (4 1 o)
Q<s<t 0<e<oo,0<t—s

X f (Ze—s,f& 77 I{Zu<0}dv)(z, )T (s)dzdyds



Put-Call Parity
For any random variables X and Y, we have an equality; max{X --Y,0} +
Y = X + max{Y — X,0}. Applying this relation to our Call and Put

regarding X and Y as our stochastic corridor R(t) and fixed level corridor
F(K),

T T T
max [[ {8, < St}du—/ I{S, < K}du, 0] +/ I{S, £ K}du
0 0 0
T T T
=_/ I{S, < 8:}du + max [f I{S, EK}du—/ I{S, < 5:}du, {]]
0 0 0

Since the pay-off of the left hand side and the right hand side of the equation
coincide, the prices at time zero of the derivatives corresponding to each
side must be equal under the assumption that the market does not allow
any arbitrage. Hence, using the linearity of expectation, we have (the
price of corridor call)--(price of fixed corridor) =(the price of stochastic
corridor)+-(price of corridor put)



6 Forward Starting Corridor

Let [Ty, T1), 0 < Tp < T4, be a future time interval where a corridor option
counts the amount of time that the stock prices stay below a level, either
fixed or stochastic. Now, the payoffs of forward starting fixed corrldor and
stochastic corridor are respectively,

T
F(K, (Ty,T})) = / I{S, < K}du
To
and
Ty
R(t,(To,T1)) = | I{S. < S.}du.
To

A contract is made at time O and the payoff is paid to the holder at time
T1. Then the prices of these options in the Black-Scholes model are

e TN By f I{S, <K}du]

e " Ey [f I{S, < 8}du]

resp ectively.



As we saw in the previous section that the probability distribution of
the stochastic corridor is independent of the value St .. the value of the

initial stock price in the future time interval [Tp,Ti]- This independence
property may be expected to be useful in practice when they set a level
for the fixed corridor. In order to decide a constant level X, it may be
required in practice to have a certain idea or a prediction of overall level of
stock prices during the future time interval [Ty, 71]. Since it is not easy to
make a prediction, it may be plausible sometimes to depend on a stochastic
value to determine an overall level, for example S7,. Or there might be a
special time point ¢ during the future time interval [Ty, 7] that is suitable
for making S; the stochastic level for the stochastic corridor.



If one wants to compensate the result from the ambiguity of a suitable
value of K with the difference between the two forward starting corridors,
one can swap to exchange the forward starting fixed corridor with the for-
ward starting stochastic corridor. The payoff of this swap is

T]_ Tl
/ I{S, < 8}du— f I{5, < K}du

To To
or
T T
I{Su < K}dﬂ — f I{Su < St}du.
To T



As in Section 3, we need to be able to determine a proper theoretical value

of K which makes the price of the swap contract be zero at the time of the
contract, i.e. at time 0. That is, K has to satisfy the equation

e ™
0=eNEy]| I{Su<K}du— | I{Sy<S,}du]
T{) Tn

In other words,
T Ty
By f I{Su < K}du] = Eo[ | I{S. < S,}du].
Tu TD
The above expectations are the conditional expectations taken under the
condition that the value of Sy is given. The existence of such a constant K
is assured using the same argument as in the previous section.
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The probability distribution of jg;‘ I{Sy < S:}du is St,- indepen-
dent and is the same as that of fg 1=To y {8y < S:}du. (See Fujita and

Miura(2004)). However, the calculation for Ep| _[;;1 I{8, < K}du] requires
some additional comments.

T1 | TI
Bof | 1{Su < K}dulSo] = EolEn,[ | I{S. < K}du|Sp]|5]
To D

™ K
= BolBr[ | H{X*™ < 2—}du|Sn,)IS0]
To To

Since for any w in [Ty, T1], (Xy — X7,) and X7, or equivalently ST, are
stochastically independent of each other, the expectation inside can be cal-
culated with any given value of Sz, and the result integrated with respect

to the density function of Sg;,. So this does not involve a joint distribution
function.



A call option with a payoff

T1 Tl
max [ / I{S, < 8,}du — f I{S, < K}du, o] ,

To T

Is possible. Its price can be calculated in a similar way to that for the
option for the spot starting corridor.






Section 3. Weather Derivatives

: Underlying variables are not tradable. Incomplete Market
models.

: Taking from Mark Davis’s papers.
: Marginal rate of substitutions.

: How about a forward starting Weather derivatives;
conditionally more accurate forcasting of the weather (?).

Can we use rank to use an advantage of rank statistics.
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Davis M H A 1998 Option pricing in incomplete mar.
= arfathemaﬁcs of Derivative Securities ed M A H Pempatﬂr
and S R Pliska (Cambridge: Cambridge University Press)

‘Option Pricing in Incomplete
Markets

Mark H.A. Dauvis

Abstract

In this chapter a general option pricing formuls is proposed, using arguments
based on marginal substitution vatue. By giving the investor an external ob-
Jective in the form of a utility maximization problem we arrive at a unique
price in situations where standard arbitrage arguments cannot be used. Fur-
ther, we show using Markov process theory that the price can be expressed
as a discounted expectation where both the measure and the discount rate
are uniquely determined. Models with stochastic coeflicients and transaction
cost models are studied in detail.



1 A General Option Pricing Formula,

. The Black-Scholes option pricing formula depends on exact replication and
is only applicable in complete markets. It expresses the option value as the
expected discounted exercise value where the expectation is calculated using
the uniquely defined “martingale measure”. In incomplete markets, exact
replication is impossible and holding an option is a genuinely risky business,
meaning that no preference tndependent pricing formula is possible. In tech-
nical terms, the problem is that no unigue martingale measure exists. A
variety of approaches have been suggested to get round this problem, none
of them perhaps entirely satisfactory. Here we show that if option ricing
is imbedded in a utilit maximization framework, i.h@gmw

WMMWM measure ermerges in a
T e ——— ——— —— —

) yery natural way.




An investor with concave utility function U/ and starting with initial cash
endowment z forms a dynamic portfolio whose cash value at time ¢ is X7(¢)
when he uses trading strategy 7 € 7, where T denotes the set of admissible
trading strategies. His objective is to maximize expected utility of wealth at

a fixed final time T we denote
V(z) = sup E[U(X3(T))) (1)

Throughout the paper it will be assumed that the utility function U is
non-decreasing and C? on R, with U’ 0,im; o U(z) = oo and

916 \ : -
N73a flen U
W.{,
j .

LA, 2y )



limg_. o, U’(z) = 0. We ask the question whether the maximum utility in (1)
can be increased by the purchase (or short-selling) of a. European option whose
cash value at time I is some non-negative random variable B, the purchase
price at time zero being p. We use a “marginal rate of substitution” argu-
ment: p is a iair price for-the option if diverting a little of his funds into it at
time zero has a neutral effect on the investor's achievable utility. This is an
entirely traditional approach to pricing in economics — see [6] for references
— but does not appear to have been used much in an option pricing context.

——

/
) [6] D. Duffie, Dynamic Asset Pricing Theory, Princeton University Press,
- _~71992,



To state the definition in precise terms, we need the function W given as

W(é,z,p) = sup EU ( T (1) + 6}3) _ §Leasd ﬂ%Xz‘i

z—8 -
€T p
" S+ REN Sy
Definition 1 Suppose that for each (z,p) the funciion § — W(b,z,p) is
differentiable at 6 = 0 and there is a unique solution p{(x) of the equation

ow
W (0: 2, fﬂ) = 0.

Then p(z) is the fair option price at time 0. g



JThis definition will clearly reproduce the Black-Scholes value if perfect
‘hedging is possible. The argument i3 as Iollows: Suppose g 1s The pertect-
Teplication value and the option is offered for p. The investor buys 6/p options
with cash &, investing the remaining 2 —~ 6 in a portfolio. A moment’s thought
shows that his optimal procedure is to short the hedging portfolio, whose value
is &po/p and invest his cash fund of = + &(ps/p — 1) optimally, attaining an
expected utility of V(z 4 6(po/p — 1)). (The option and short hedging fund
have equal and opposite value at time T.) The marginal rate of substitution

is therefore
| d Po ) :)
—Vieg+é6|l—-—-1 =({—=—1]|V{x).
dé ( ( p )) §=0 (p | @)

Evidently, this is equal to zero exactly when p = py.

In general, if the investor diverts ¢ into options and uses trading strategy
m then his expected utility is

E[U( :_5(T)+§B)] BIUCKE (T} + S BIU(XT (TB)+0(0). ()

r



(T)r
e A

Lemma 2 Let f : AX R — R be a function, where A is some sei, and for
6 € R define

y
We now need the following lemma. x- §

»(8) := sup f{r, 8).
TEA

Suppose that, for some 6o € R, v is differentiable at 6o, there exists m* € A
such that v{(6o) = f(x*,&) and the function 6 — f(m,6) is differentiable at

ﬁg.Tth
d (5)—-—af(‘5J
36"\ = g™ %)

- We can now give a general option pricing formula based on Definition 1.

Theorem 3 Suppose that V is differentiable at eachz € R, and that V' (z) >
0. Then the fair price §(z) of Definition 1 is given by

EU(XZ(T))B]

R 3

The proof is obtained by evaluating the derivative with respect to & of the
maximum utility at § = 0, using (2) and Lemma 2, giving a value of

Vo ey

from which (3) follows.
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Abstract

Weather derivatives are a classic incomplete market. This paper gives a
preliminary exploration of weather derivative pricing using the ‘marginal
substitution value’ or ‘shadow price’ approach of mathematical economics.
Accumnlated heating degree days (HDD) and commodity prices are
modelled as geometric Brownian motion, leading to explicit expressions for

swap rates and option values. =



1. Introduction

Many companies are exposed to ‘weather risk’.  For
concreteness, we shall think in terms of an energy company
supplying gas to a retail distributor. If a winter month such
as January is unusually warm then the company’s profits are
adversely affected because of the reduced volume of gas sold.
Note that this is a separate issne from price risk which may
also be present. The company can partially hedge the volume
zisk by trading in weather derivatives, which are normally
gdefined as follows (see Geman [4} for extensive background
information). Let T;, the ‘tetnperature on day i’ be the average
of the maximum and minimum temperatures in degrees Celsius
on that day at a specific location (London Heathrow Airport
_n the UK), The daily number of ‘heating degrees’ is HDD; =>
ax(18 — T3, O)>and the accumulated ‘heating degree days’
e-month (31-day) period ending at date ¢ is
¢ = ?20 HDD,_;.)Over-the-counter contracts are written
Wit X; as the ‘underlying asset’. These may be swaps, the
payment at time T being A(x — Xr) where A is the point value
and « a fixed number of accumulated HDDs, or they may be
options with exercise value A max(Xr — K, 0) for a given
strike K. The question is, what is the value of these contracts,
i.e. the level of the fixed side « such that the swap has zero
value, or the premium to be paid at time 0 for the call option.
Since there is no liquid market in these contracts, Black—
Scholes style pricing is inappropriate, yaluation is generally
done on an ‘expected discounted value’ basis, discounting at
ihe riskless rate but under the physical measire, which throws
all the weight back onto the problem of weather prediction.




2. Pricing formulae

We model the accumulated HDDs (over, say, a one-month
sliding window endifig at fime 7) by a log-normal process GJE;_

satisfying
dX; = vX,dt + y X, dw, (¢). ¢h)
Thus at time T,
Xr = exp(m(T) + ywi(T)) (2)
where |
m(T) =logXo+ (v — 1y T. (3)

For pricing a weather derivative maturing at time T the
main object of concern is simply the one-dimensional random
variable X, and our basic assumption is that this is log-normal,
as indicated by (2). We suppose that the volume of gas sold per
unit time is some function v({t) = v(X,) and suppose that—at
Ieast over some range—we can take v () aslinear: y(£) = o X;.
The profit is therefore ¥; = a X, S;, where S; is the spot price,




As is conventional, we suppose the price to be log-normal:
dS; = pS,dt + o S;dw(t). 4)

In these equations, w;, w- are standard Brownian motions with
correlation E[dw;dws,] = pd¢. From (1) and (4), ¥, satisfies

dY; =0Y.dr + £EY,dw(t) (5)
with ¥y = a8y Xp, where
@ =v+u+poy

A

and

E=y2+o2+2py0.

The new Brownian motion is .

1
dw = — (-_ydwl + O'dtl.?z).

5 TN



Suppose the weather derivative has exercise valué B(X7) )
at time T'. In {2] we gave a valuation formula for an investor
whose overall objective is to maximize the expected utility
E[U (Hr)] of his portfolio value Hr at time 7. This value is

E[U'(H7)B(XT)]
Vi(n)

where H7 is an optimal portfolio of tradeable assets with initial
endowment 77 and V(1) = E[U(H7)]. In the present case our
producer has no investment decisions: he simply produces
up to the level of current demand and sells at market price.
Thus H} = Yr, the profit at time T. We will assume utility
is logarithmic, U/(y) = logy, and then it is easy to see that
V(y) = logy + const. Thus V'(y) = 1/y and the pricing
formula (6) becomes

>$j_ t -
A p=E [-—B(Xr)] 19

(6)

p=

Proposition 1. ﬁ?;e zero-cost swap raﬂat time 0 is

—pay)T Xo. (8)



The option value (4) with B(x) = [x — K" is given by
ﬁ = BS(I[], K‘l r.gq,v, T): (9)

the Black—Scholes call-option formula, in which the 'riskless
rate’ r and ‘dividend yield’ q are given by

r=pu+v—y*—o?—povy, (10)
qg=u—o. (11)



Proof. Defining Z; = Yy/Y; we find using (5) and the Ito
formula that

er = —-rZ;dt - !;'Z;dw;, Z{} = 1,

where 7 is given by (10). Thus
p = E[e”" exp(—£°T/2 — Ewr) B(X7)]

= E[e~"" B(X7)] (12)
where £ denotes expectation with respect to the measure £ (—T‘
defined by % >
dp 2154,

— = exp(—£2T/2 — :
ap — Sxp(=§7T/2— fur) St



)

Recall that X, satisfies (1). We find that E[dwdw;] = p1d¢
where o1 = (y + po)/E, and div = dw + £dt is Brownian
motion under P by the Girsanov theorem. Tt follows that under
P there is 2 Brownian motion 1 such that

dX; = (v — p1y6) X dt + y X, du, (r). (13)

We note that the ‘drift’ isv — gy = v —y*—poy =r—¢q
with ¢ defined by (11). Thus when B(X7) = Xr — & we
have p = e 97 X, — e Tk, so the zero-cost swap rate is
£ = e DTX,: this is (8). In the case of a call option,
B(Xr) = [Xr — K]*, and the result (9) follows from (12)
and (13). 0

\.



2.1. Comments

e The swap rate ¥ is not equal to the physical measure
forward HDD e'T X, but is equal to ¢’ X where 7 =
v — y2 — poy depends on both HDD and price volatility.

e If the price is constant (4 = ¢ = 0) then the ‘dividend
yield’ ¢ of (11) is zero and the opticn price (9) is just
the no-dividend Black-Scholes price with ‘riskless rate’
7, Note that g depends only on the price parameters. For
general 11, o the discountrate isr = F+u —a?. Theeffect
of price volatility on option value 1s explored in section 4
below.

e The pncm g formulae do notinvolve the demand scnsmvlty
o, S0 it is unnecessary to estimate this parameter. Since
Y, = aX,S;, adjusting & is equivalent to changing the
units of the price process S;. The pricing formula is
invariant under such changes; it only depcnds on the drift
and volatility parameters of ;.

e The riskless rate of interest does not come into the picture
in view of the absence of any trading involving the riskless
asset,
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Fipguare 1. Long-term average temperature and temperatures for
1988,
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Figure 2, Empirical distibution of residuals and best normal fit.



3. HDD modelling

Weather prediction is a big subject. Nevertheless, some simple
things can be said that provide an adequate basis for at least
some derivative pricing problems. The objective of this section
is to provide just enough evidence to convince the reader
that a log-normal mode] for accumulated HDDs is not at
all nnreasonable, and to give easily-impiemented parameter
estimation methods. We do not claim to be providing an
exhaustive analysis of the data.

The data set? consists of daily temperatures (average of
maximum and minimum) at Birmingham, England for the 11
year period 1988-1998. We denote this series by {I;,i =
1,...,4015}, while {T;,i = 1,...,4015} denotes the long-
term average temperature. For each i, T'; is obtained by taking
the average of the 11 temperatures on the corresponding date
and then smoothing the series by moving-average smoothing.
Thus the T'; series is periodic. Figure 1 shows the two series
for the year 1988,



As many researchers have noted, the deviation D; =
T; — T; is accurately modelled as a low-order autoregression
(AR):

Di = ) & D +be, (14)
k=1

where ¢; is a sequence of independent unit-variance Ganssian
residuals. Here we restrict ourselves to the first-order case
n = 1. The least-squares estimates a, b of the parameters
as, b based on the whole data set are @ = 0.70,5 = 1.99.
These estimates are quite stable when estimated over, say,
 three-year windows of data. A more sophisticated analysis
would allow for secasonally-dependent variability &, but we
have stuck to a constant-parameter model. The residual
sequence is then €; = (D; — aD;_1)/b. The first ten estimated
correlation coefficients—again based on all the data—of the
residuals are all in the range +0.045, ‘indicating that the
residuals are reasonably ‘white’. What is more striking is the
residual empirical distribution, shown ong with
the normal density with the same mean and vanance. The fitis
astonishingly good. No financial time series behaves like this!



We are thus happy to represent the deviation from long-run
average temperature as a Gaunssian first-order AR,

The AR (14) withn = 1 and |a;] < 1 convergestoa -
stationary distribution with mean zero and standard deviation |

X = b/,/1 —a}. The correlation coefficient at lag k is af.

Since 0.71° = 0.0047 we see that the deviations from long-run
average at any time more than two weeks ahead are essentially
independent of today’s value. Thus if we want to estimate the
distribution of accumulated HDDs over a one-month period
starting at any time more than two weeks ahead we can simulate
D; from the stationary distribution and take the simulated
temperature as T; = T; + D. hows the empirical
distribution and best log-normal fif for accumulated HDDs
over the month of May, using the estimated parameters a, b,
The fit is excellent, and similar results are obtained for other
months. In fact, this is not surprising: the mean temperature in
May is around 11 degrees and with the estimated parameters
X = 2.77. Thus the 18 degree barrier is 2.5 standard deviations
away from the mean, so that the accnmulated HDD is close to
being normally distributed. The log-normal distribution with
the same mean and variance gives an excellent approximation
to standard option values, although of course the tail behaviour
is radically different..



4. Example

As an example, consider a call option on the accumulated
HDDs for May 2001, written on 1 November 2000 with stke
K = 560. From our simulations, we know that the mean and
standard deviation of the accumulated May HDDs are 577 and
35 respectively. (The option is thus ‘at the money’.)- Referring
to the representation (2), we find by calculating the mean and
variance that y = 8.82% and m(T) = 6.325. If we take
Xo = 560 then this implies v = —0.13%. For the price process
we take . = 0, so there is no drift in the price. However,
as can be seen in figure 4, the value of the option depends
significantly on the price volatility. Under the measure P, X,
has drift r — ¢ = v + y2 — poy, while the discount factor is
r = (r—q)+u—o?. If p = 0, the drift is independent of & and
the option value increases with ¢ because the discount factor is
reduced. For p > 0 both drift and discount factor are reduced
with increasing o; the net effect is decreasing option values

except for very small p, as the chart shows. When p < O the
effects are in the same direction: less discounting and higher
drift lead to increasing value. :
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Figure 3. Simulated HDD distribution and best log-normal fit,
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Homework

: (1). Derive the pricing function of the standard
(usual) Barrior option: perform the calculation.

: (2). Discuss if Brownian quantile is a Markov
process.

: Please submit, by e-mail, your homework by Monday
noon (May 2) so that | can get them printed.






Appendix

Incomplete attempt for weather
derivatives and a firm value with
probability of default.



An attempt (unpublished work: incomplete)

Interested in

: how much the weather derivative helps the
value of a firm.

: how many contracts a firm should buy in order
to decrease a probability of default?
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