Generalized Lehmann's Alternative model and skew symmetry: Supplement to the lecture

G(x:δ,F)=h(F(x): δ) g(x: δ,F)=f(x)2F(δx), Or =f(x)2K(δx) Thus

$$h(t:\delta,F,K) = \int_0^t 2K(\delta F^{-1}(u))du$$

and

$$h(F(x):\delta,F,K) = \int_0^{F(x)} 2K(\delta F^{-1}(u)) du$$

In my lecture, the setting

 $h(F(x):\delta)=F(x)2F(\delta x) \text{ or } h(F(x):\delta)=F(x)2K(\delta x),$

where F and K are cumulative distribution functions,

was not proper since it approaches to 2 as $x \rightarrow \infty$.

I took a look into a paper by Azzalini (2005, Scandinavian J. of Statistics) to see their definition of skew symmetry.

There the definition was given in a form of a density function, $f(x)2F(\delta x)$, or $f(x)2K(\delta x)$,

not in a form of a cumulative distribution function.

Now in order to see the correspondence of a skew symmetry to

our GLA model(or a transformation model), we can set

 $G(x:\delta,F)=h(F(x):\delta)$ in the following way,

where F is an original distribution and G is a transformed distribution

The density function is,

$$g(x:\delta,F) = \frac{d}{dx}h(F(x):\delta) = h'(F(x):\delta)f(x), \text{ (where }h'(t:\delta) = \frac{d}{dt}h(t:\delta))$$

where we see h'(F(x):\delta) is acting on f(x) to give it a "skew"
as 2F(\deltax) or 2K(\deltax) does in their skew symmetric models.
Therefore, the proper setting for our GLA model to respond
to their skew symmetry, will be

h(t:
$$\delta,F$$
)= $\int_{0}^{t} 2F(\delta F^{-1}(u))du$ or = $\int_{0}^{t} 2K(\delta F^{-1}(u))du$, and
G(x: δ,F) = h(F(x): δ)= $\int_{0}^{F(x)} 2F(\delta F^{-1}(u))du$ or = $\int_{0}^{F(x)} 2K(\delta F^{-1}(u))du$.
Now, what we need to check is that thus specified h(t: δ,F) satisfies
the general condition as was done in our Homework 4.
These conditions for h(t: δ) can be checked for the regions:

$$\{\delta > 0, 0 < t < \frac{1}{2}\}, \{\delta > 0, \frac{1}{2} < t < 1\}$$
 and for $\delta < 0$ regions respectively.