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[1] 1st Day.  April 20  (= 3 hours).

[“Nonparametric Statistics” for Brownian Motions.]

Definition and Probability Distribution of 

: (i). Occupation Time (Empirical Distribution Function),

: (ii).Brownian Quantiles or alpha-quantiles (Order Statistics),

: (iii). Ranks (Rank Statistics).

The probability distribution of these quantities will be derived under the 

assumptions that the underlying stochastic process is Geometric Brownian 

Motion. 

These could be regarded as a continuous time version of probability theory 

of cumulative sum of iid random variables.

Using the followings; 

Arcsine Law, 

First Hitting Time, 

Moment Generating Functions, 

Feynman-Kac Theorem, 

Laplace Transformations.
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: Definitions of α-quantiles = Miura(1992)

: Rigorous Treatments for probability distributions = Akahori(1995)
: Some properties = Dassios (1995), Yor(1995),Embrechts et’al (1995).

:Further Developments = Dassios (2005) and others(Levy process)
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“Valuation of a Repriceable Executive Stock Option”



Section 1.
Definitions and Probability Distributions

“Empirical Distribution Functions” :Fixed Level Corridors

“Order Statistics” :Brownian Quantiles

“Ranks” :Stochastic Corridors
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:1. “Non-Parametric” Statistics and Exotics.

Three “Non-Parametric Statistics” of a Brownian Motion  are:

“Empirical Distribution Functions”, 

α-quantiles , and  

Ranks 

Assume : the Stock price follows a Geometric Brownian Motion:

: (1-1) ”Empirical Distribution Function”
Fixed Corridor : Corridor with a Fixed Level K, 0<K
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:(1-2) α-quantiles : m(α,S) . “OrderStatistics”
: S in order to indicate the stochastic process on which  the quantiles are defined

For any givenα∊[0,1], α-quantile is defined as a quantity
m(α)  such that

Note: m(α,S) = S0 exp{ m(α,X) }  where m(α,X) is such that
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: (1-3)  Ranks
“Rank Statistics” Process = Stochastic Corridor 

The rank process is defined by

for any prefixed time point t in [0,T].

Note: The Rank does not depend on the initial value S0. 

Also, note: Rank is invariant under shift and scale changes.          

So we see that R(t,S) = R(t,X).
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Also an important relation to α-quantiles is,

Identity of events:  {m(α,S,[0,T]) < St} = {R(t,S,[0,T]) >α}.

: Note: These “statistics” are counting how much time the stock prices 

are under  K, St, and m(α), respectively
:********************************************************

The relations of the Three “ Nonparametric Statistics”







Derive Probability Distribution of Rank

St =exp(μt+ σWt)

Zero drift case: μ = 0, σ =1

Drift : μ ≠ 0, σ >0
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Thus, it was enough to derive a joint probability distribution function (or density function) of (WT,

) rather than that of (WT,

) in order to calculate the above expectation. These joint densities of the decomposed variables;

can be obtained from Lemma1.
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Joint distribution of quantiles

: Fujita = two quantiles

: Imamura= more than two quantiles

(decompose upper part and lower part and delete the flat part)

: Imamura+Miura= multivariate distribution in the form of each 
differences and maximum

: How about conditional distributions given Maximum and /or 
Minimum





Section 2. F(K) and Rank

.
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ua1, and the distribution of the first hitting time  of W  to A
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: (2-3). Probability Distribution of α-quantile of Brownian Moton  

α-quantile is defined as a quantity m(α) for any givenα∊[0,1] such that

α= 

i.e. α-quantile is the level below which

the stock price stays for 100α-percent of time during the time interval [0,T]. 

Based on the relation; for any y≧0,

the probability distribution for m(α) can be obtained as

Akahori(1995) rigorously derived the probability distribution of m(α), 

and Fujita(1997) derived the joint probability density function of 

in order to price a call option with payoff function; max{ST - m(α),0}.
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Items & Tools

First Hitting Time

Arcsine Law

Joint density (Fujita):occupation time

:*********************

Feynman=Kac Theorem

Laplace Transform

Cameron=Martin=Girsanov=Maruyama



1. First hitting time

Refer to 

Wellner &Shorack

Or 

Karatzas & Shreve.

And give a brief description in the class
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2. Cameron-Martin-Girsanov-Maruyama 
Theorem

Brief Description of the theorem.

Please take it from a book of 
Probability for a rigorous and 

general form. 
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(iii)  =W  is a Brownian Motion under Q.

:*****************************

In application, 
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ution of the first hitting time  of W  to A



3. Levy’s Arc Sine Law

Use Feynman-Kac Theorem and 
Laplace Transformation, to derive it.

Show some details of derivation 
(calculation).

Karatzas & Shreve has a description.



Feynman-Kac Formula.(brief memo)

The parabolic equation for u(t,x) (t,x) [0, )x(- , ).
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Proposition 4.11.(Levy's Arc-Sine Law for the occupation time of (0, ).)

W  ;Wiener Process.
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4. Joint Probability Density. 
Lemma 1.

an outline of derivation is shown, by Fujita 
in his working paper and Fujita&Miura’s
paper (Edokko Options(2003)). 

Also, we see it in other literatures as well.







Fujita also derived it in Fujita&Miura(2003)

The approach is the same as that for 
the occupation time : Arc Sin Law; 

using Feynman-Kac Theorem.





Homework for students.
Please submit next Monday to the office of ?

: (1) 0<T1<<T <∞. St  , , t on [0,T]  a Geometric Brownian motion.

Are the followings true? If true, prove it. If not true, give a counter example.

: (1-1).For each path,  if m( α: [0, T])< m( α: [0, T1]) , then m( α: [0, T]) >
m( α: [T1, T]) .

: (1-2). {Rank(ST1: [0, T1]) > α }= {ST1>m( α: [0, T1]) }

: (1-3). For each path, Let α(ω) =Rank(ST1: [0, T1]) (ω) .

If Rank(ST1: [0, T1]) > Rank(ST1: [0, T]) , then m( α (ω) : [0, T])>ST1 .

: (2). Use Brownian quantiles m(α:[0,T]) for 0<α<1 to express the  area 
under a path of a geometric Brownian motion, roughly.


