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[1] 1st Day. April 20 (= 3 hours).
[“Nonparametric Statistics” for Brownian Motions.]

Definition and Probability Distribution of

: (1). Occupation Time (Empirical Distribution Function),

: (ii). Brownian Quantiles or alpha-quantiles (Order Statistics),
: (ii). Ranks (Rank Statistics).

The probability distribution of these quantities will be derived under the
assumptions that the underlying stochastic process is Geometric Brownian
Motion.

These could be regarded as a continuous time version of probability theory
of cumulative sum of iid random variables.

Using the followings;

Arcsine Law,

First Hitting Time,

Moment Generating Functions,
Feynman-Kac Theorem,
Laplace Transformations.



References.

R.Miura (1) "A Note on Look-Back Options Based on Order Statistics",
Hitotsubashi Journal of Commerce and Management. Vol. 27, No.1,
November 1992.

(This paper should be regarded as a brief writing to present the ideas.

The rigorous works can be found in the papers by Akahori, Dassios and
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A Brief History of a-Quantiles and Ranks
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: [2] Miura, R. (2007). “Rank Processes, Stochastic Corridor and Applications to Finance.”
Advances in Statistical Modeling and Inference

(Festschrift s for Professor Kjell Doksum, his 65 th. Birthday).
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Section 1.
Definitions and Probability Distributions

“Empirical Distribution Functions” :Fixed Level Corridors
“Order Statistics” :Brownian Quantiles

“Ranks” :Stochastic Corridors






:1. “Non-Parametric” Statistics and Exotics.

Three “Non-Parametric Statistics” of a Brownian Motion are:
“Empirical Distribution Functions”,

a -quantiles , and
Ranks

Assume : the Stock price follows a Geometric Brownian Motion:
X u+oWw
S, =5, =5, ,forue]o,T}]

: (1-1) “Empirical Distribution Function”
Fixed Corridor : Corridor with a Fixed Level K, 0<K

F(K):%LT 1{S, < K}du



:(1-2) a-quantiles : m(a,S) . “OrderStatistics”

: S in order to indicate the stochastic process on which the quantiles are defined

For any given ¢ €[0, 1], o« -quantile is defined as a quantity
m(a) such that

o = % jOT I1{S, < m(a,S)}u

Note: m(«,S) =S, exp{ m(«,X)} where m(«,X) is such that

LT 1LX, <m(a, X))
a == X, <m(a, X)}du
or more precisely, (now, this is called Brownian quantiles)

m(a, X) = inf {x < TijOT 1{X, < x}du}



: (1-3) Ranks

“Rank Statistics” Process = Stochastic Corridor
The rank process is defined by

R(t,S) = % [ s, <5)du

for any prefixed time point t in [0,T].
Note: The Rank does not depend on the initial value S,
Also, note: Rank is invariant under shift and scale changes.

1{S, <S.}=I1{S,e”™ <S,e™}=1{X, <X}

So we see that R(t,S) = R(£,X).



Also an important relation to o -quantiles is,
Identity of events: {m(«, S, [0, T]) <S} = {R(t,S,[0,T]) >« }.

C [ 1S, < u<at={m(@) > v}

: Note: These “statistics” are counting how much time the stock prices

are under K, St, and m( ), respectively
:********************************************************

The relations of the Three “ Nonparametric Statistics”

F(K)
F(S;) =R(t)
F(m(a)) =
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Rank of W;
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T
/ I{W, < W;}du
0

RO, := 1 [T I{W, < W, }dt



Derive Probability Distribution of Rank

S, =exp(pt+ cW,)
Zero drift case: u=0, 0 =1
Drift: n#0, 6 >0



Derivation of the density function of R .

T
RS = = /0 I{W, < W,}du

t T
:%/ I{Wt—Wu>0}du—|—%/ {Wu—Wt<O}du
t

A | T —t 1 e B
I W - I
=5 [ HW. > 0}du+ — T_t/O (W, < 0}du
T—t
_TAl—I_ T Aj

Al, Ay: two mdependent arcsine random variables
Wu =Wy — Wiy, Wu = Wiy — Wi



T
T(IUZ

E[h(T-R 7 ()] = E[" = Zn(T R (1))

My Ly
:J-J.—oo<x<oo,0<y<]_ea 7 2h(y) f(W T I;\,101) (X Y)dde
(more precisely, noting that W, =Z; , —Z,)

Mz -z)-(H L

=Efer 7 *h([ 1{Z, <O}ds+ | 1{Z. <0}ds)]

J‘I—oo<x1<oo O<y1<T —t J‘J‘—oo<x2 <o0,0<y, <t

Blu-x)-(473
e’ h(y, +y)f . " 2 coyaey Dt YOIV T

j 1{Z,<0}ds)

(X,, y,)dy,dx,



Thus, it was enough to derive a joint probability distribution function (or density function) of (WT,

) rather than that of (W,, R%*

*0,1
) in order to calculate the above expectation. These joint densities of the decomposed variables; T

foo, (X, ¥y), (X5, Y2)

* —t * t
(Z70.f,  14Z5<0}ds) (20, 142,<030s)

can be obtained from Lemmal.



Lemma 1.

P(W, e da, jot 1{W. < 0}ds e du)

-

\

(J-o 272_\/33

(,——=

ZE\/SB(’[ —s)°

a

(t-s)’

e*"*)ds)dadu fora >0

e 2 ds)dadu fora <0




Density function of RZT (1)

2T

fre (%) = /_ooeXP {ﬂy— ”2

} f(WTrRt,T) (y’ x)dy

Density function of RY LT (2)

ForO<t<T/2,

Jowrr, ) (X, y) = T//A fi (x1, 1) fr_(x — x1, Ty — y1)dx1dy,

A =

{(x1,11) : —00 < x1 < 00,0 <y; <t}, —co<x<oo,+t<y<Iit

{(x1, 1) : —0 < x1 < 00,0<y;1 < Ty}, — 0 <x<00,0<y<%
{(x1,y1) : —0 < x1 <00, Ty— (T—t) <y <t}, —co<x<oo, =t <y<1.



Density function of R}’ (3)

’

i (a,u) = L Ve gy o >0
a

3
“ 2
/ - exp{—a—}dS,a>O
0

T E
/u 271,/ (t — 5)° = {—Z(t py } ds, a < 0

f; : joint density function of (W, fot I{W, < 0}du)
fi"+ joint density function of (W, [ I{W, > 0}du)

ft+(a/u) = 4

\



Rg,l: rank of X,

- - O
Density function of Ry ; Density function of R} and R_O B
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Joint distribution of quantiles

: Fujita = two quantiles
: Imamura= more than two quantiles
(decompose upper part and lower part and delete the flat part)

: Imamura+Miura= multivariate distribution in the form of each
differences and maximum

: How about conditional distributions given Maximum and /or
Minimum






Section 2. F(K) and Rank



Fixed Corridor FCyg

120

15

10 F :

) /\/\/\/\,\ _

A

100 i

95 |- g

90 I gg— 1 ! L L e 1 1 1 1 —]
0 10 20 30 40 50 60 70 80 90 100

FCie= | 18, = Kldu



P{TF(K) <3}
=pP{ 1{s, <K}du<x}

=P{[ 1{Zu+W, < Ajdu < x}=E[1{] |{ﬁu +W, < A}du < x}]
o 0

J0

_ E[e T(a)2|{j0 W, < Adu <] = E[ee" @ 2|{(f+j 1{Z, . <0}u) < x}]
(Wherewe put Z,__ =W, -W_ and z=inf{u: W, > A} )

A (42T ﬂzT
o

By, (22 7 42
—E[ec o 2g bt |{(r+j 1{Z, < 0}du) < x}]
Hoa U2 T

=Efer < e I{(r+] 1z, <0}du) <]
which can be calculated by using the joint probability density function of
(Z,_..] "Mz, <0}du<x)

shown in Lemmal, and the distribution of the first hitting time = of W, to A



o T, —inflt —0:5 = Al

Density function of 74

i
R
ol e

s lles Al
R EDE e
1 1

0 0.2 0.4 0.6 0.8 1

Ta:=inf{t > 0: 5, = A}, S; = Soexp {(r y —i—aWt} (So = 100)



Density function of f01 I{Sy < K}du

K=100
K=105 |
-~ K=110

5: = Spexp { t+ (TWt} (So = 100)



Density Function of Fixed Corridor

ECy == foT I{S, < K}du, 5; = Sgexp {(r - %2)13 + (TWt}
Si=100F=01 =02 T=1



: (2-3). Probability Distribution of o -quantile of Brownian Moton
o -quantile is defined as a quantity m(« ) for any given « €[0, 1] such that

o= [ 148, <m(e)}du

1.e. a-quantile 1s the level below which
the stock price stays for 100a-percent of time during the time interval [0,T].
Based on the relation; for any y=0,

C [0S, < du<at={m(@) > v}

the probability distribution for m( ) can be obtained as

P{m(a) < Y} =1— P{% [11{s, < y}du <a}

Akahori(1995) rigorously derived the probability distribution of m( ),
and Fujita(1997) derived the joint probability density function of

(Sr.m(a))

in order to price a call option with payoff function; max{S; - m(«),0}.



Alternative approach to derive the density
Dassios(1995)

Mm(« :[0,t]) = (In Law) =Y, + Y, ,
where Y, and Y, are independent, and
Y, = (in Law)=sup,,, X,

Y, = (In Law)=Supg_, gy X

a)t’tu



Density function of x-quantile

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

m(a, T) mf{ : TfOTI{Su < % }du >'oc}
5= Soexp { (r— 7) t+0W, }, So = 100, = BT -1



Density function of S; and 1(0.86,1)

m(0.86,1)
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Items & Tools

First Hitting Time
Arcsine Law
Joint density (Fujita):occupation time
:*********************
Feynman=Kac Theorem
Laplace Transform
Cameron=Martin=Girsanov=Maruyama



1. First hitting time

Refer to
Wellner &Shorack
Or
Karatzas & Shreve.
And give a brief description in the class



We now record various probabilities associated with Brownian motion: &

(6) P( sup S(s)> b) =2P(N(0, t)>b)

O=x=

Consider (6). Corresponding to every sample path having $(t)> b, there
are exactly two “equally likely” sample paths (see Figure 2) for which ||§7| ¢>
b. Since $(r) = N(0, 1), Equation (6) follows. The theorem that validates our
key step is the “‘strong Markov property” (see Theorem 2.5.1}; we paraphrase
it by saying that if one randomly stops Brownian motion at a random time 7
that depends only on what the path has done so far, then what happens after
time 7 as measured by {S(7+ t) —S(r), ¢ = 0} has exactly the same distribution
as does the Brownian motion {S$(?): t=0}. In the argument above, T was the

first time that S touches the line y =b. Change variables to get the second
formula.

Figure 2.



We now record various probabilities associated with Brownian motion: &

(6) P( sup S(s)> b) =2P(N(0,t)>b)

D=s=

t b ( bz)
= 1. expl —— | ds forallb>0
.L v2rs® P 2s
= F(1)
} s A - -
where 7=inf {s: S(s) = b}; AT S t}f;.::,rr‘. 's lf.ﬁ:? [s) *w

= 1 b
2P(N(0,t) >b) =2 thx =€ 2sds
L tb2 b 1
by change of variable: s=—-, then, - ds = —dx.

X2 ] ] 283 ﬁ



{It+b1

by + b

Qg /_/u\’\u E

Figure 4.



Consider (8). We follow Doob (1949). Let
(d) ¢(a,b)= P(S(t)=at+ b for some t=0) where a=0, b> 0,

Now note that

(e) $(a, b+ by)= ¢(a, b))p(a, b,)

because at the instant » when S first hits the line ar-+ b,, we then have the
same problem all over again where the equation of the original line at 4- (b, + b,)
relative to the point (7, S(7)) has become at - b, (see Figure 4). This is again
rigorized by the strong Markov property. Also, ¢(a, b)=P(S(1)=a-+b)>0
and ¢(a, b) is \ in b. The only solution in b of the functional equation (e)
having these properties is

(f) ¢(a, b)=exp (—i{a)b) for some constant y{a) depending on a.



Note from Figure 5 that once § intersects y=»5 at time 7, the event that is

then required has probability ¢(aq, ar} by the strong Markov property. We
thus have

exp (—yf(a)b)=¢(a,b)  by(f)

(g) = E,[¢(a, ar)] by the strong Markov property
(h) = rexp (—¢(a)as) ° exp(—-zf-) ds b d(14
. oo 5. s by(f)and(14)
2 [® ay(a)b? 2) ., b?
= et o St A ——
- L exp( 2 y* | dy letting y >y

=exp (—bv2ay{a)) by elementary integration,

so that ¢{a) =2a.



y=at+b’ Relative to this point, the
sloping line has equation
y=at+(ar)

y=b

1

Y T
Figure 5.




2. Cameron-Martin-Girsanov-Maruyama
Theorem

Brief Description of the theorem.

Please take it from a book of
Probability for a rigorous and
general form.



C-M-G-M(Maruyama) Theorem.(a brief form)
(QQ, F,P)

Let,

W, , t €[0,00): Brownian Motion under P.

1T
7, , t€[0,00) : F — previsible process with EF’[eZJO " OIt] < 0,
Then, 3 Q such that
(i) Q and P are equivalent.

.. dQ
(1) P

e_[()T 7AW _;J.OT 7t2dt

(1) W, =W, +J'; 7,du is a Brownian Motion under Q.

IR S S b b b T b b b o b b b S b b S S e S b b b b o 3

In application,
1

EP[N(W, + [ 7,du )] = £7[eh 2k )



(/1

ETh(T-R )] = E[e”" ' Zh(T-R°A(®))]

E[N(T R ()] = E[e" = 2h(T-R(t)]

“, m\2T

__U_OO<X<OO 187 P B s (X y)dydX, (more precisely, noting that W, =7, . -27)

_ E[er TR h([ 1z, <Ods+ [ 1{Z: <0}ds)]

Ij—w<xl<w 0<y1<T —t -”‘—00<X2 <o0,0<y, <t

”(1 x)-(£y2 L
e 7 2h(y, + y)f (X, y,)dy,dx, f

. (X,,Y,)dy,dx
(ano 1{Z; <0}ds) (Zt,I;I{ZSSO}ds) 2172 2772



P{TF(K) < X}
=P{[ {s, <K}du<x}

=P |{ﬁu +W, < Adu < x3=E[I{] |{ﬁu W, < Alu < x}]

#2T

_ E[e a”a)u{j W, < Abu < x}] = E[e" 0 2|{(f+j 1{Z, . <0}u) <x}]
(where weputZ, =W,-W)

T
(:u2

_Efer" ) zg e He+[ 1z, <03du) < ]

vl

=Efec” « 2e" 1{(r+] 1z, <0}du) <x}]
which can be calculated by using the joint probability density function of
(Z,_..] "Wz, <0}u<x)

shown in Lemmal, and the distribution of the first hitting time z of W, to A



3. Levy’s Arc Sine Law

Use Feynman-Kac Theorem and
Laplace Transformation, to derive it.

Show some details of derivation
(calculation).

Karatzas & Shreve has a description.



Feynman-Kac Formula.(brief memo)
The parabolic equation for u(t,x) (t,x) € [0,00)X(-c0,0).

0, +k()u = %uxx with u(0.x)=F(x).

Assume: lim,_,_e™u(t,x) =0 for >0 and x e (-00,00).
Laplace transformed function z_ (x) = j: e “'u(t, x)dt, a>0
satisfies %Aza ()=(a+k())z, ()-f().

LR e o b b b e b o e e b o e e b o b b S e b b

Theorem 4.9.
Let,

f:R—R.with [~ |f(x+y)je ™ dy <oo. (or E*[ e f W) dt] < o0 v

k:R — (0,0); piecewise continuous
Then,

z2(x) = EX[_[OOO e f (\Nt)e_jok(WS)dsdt] is piecewise C* and satisfies

%z"(.) = (@+k()2()- () onR(D,"D,)



Karatzas&Shreve
Proposition 4.11.(Levy's Arc-Sine Law for the occupation time of (0,).)
W, ;Wiener Process.

0<6<t,
2 0
P [jl(Ow)ON)ds< 0] I —arcsm\/7
Js(l S)
Proof.

Put k(.)=51,.,(-) and f(.)=1 in Theorem 4.9. The theorem says,

ate—ﬂj.(;l(o,oo) (Ws )dS

2(X) = EX[ jo‘”e— dt], (W, =x.) satisfies

% 2 ()= (a+plg,,())z()-1.

Then, solve this, and calculate to find

© -at [t -By _ 1
Jo € Joe " ay)dy)dt = NCCEYE

where g(.) is the density function of j;l(olw) (W, )ds.
1

zJyt-y)

Some calculation gives g(y)=



4. Joint Probability Density.
Lemma 1.

an outline of derivation is shown, by Fujita
in his working paper and Fujita&Miura’s
paper (Edokko Options(2003)).

Also, we see it in other literatures as well.



Probability and
Its Applications

Andrei N. Borodin
Paavo Salminen

Handbook of
Brownian Motion -
Facts and Formulae

Second Edition







Fujita also derived it in Fujita&Miura(2003)

The approach is the same as that for
the occupation time : Arc Sin Law;
using Feynman-Kac Theorem.






Homework for students.
Please submit next Monday to the office of ?

: (1) 0<T;<<T <e2. S, ,ton [0,T] a Geometric Brownian motion.
Are the followings true? If true, prove it. If not true, give a counter example.

: (1-1).For each path, if m( a: [0, T])< m( a: [0, T,]) , then m( a: [0, T]) >
m(a: [T, T]).

: (1-2). {Rank(S,: [0, T,]) > a }= {Sy;>m( a: [0, T,]) }
: (1-3). For each path, Let a(w) =Rank(S;,: [0, T,]) (w) .
If Rank(S;,: [0, T,]) > Rank(S;,: [0, T]) , then m( a (w) : [0, T])>S;, .

: (2). Use Brownian quantiles m(a:[0,T]) for 0<a<1 to express the area
under a path of a geometric Brownian motion, roughly.



