2.

3.

DokaZeme, %e v poZadovaném tvaru jdou napsat vSechna d&isla, kterd nejsou tvaru 2™ pro
néjaké celé &islo m > 0.

To, Ze je néjaké &islo n napsané jako soudet nékolika po sobé jdoucich &isel, znamena, Ze
n = (k+1)+(k+2)+- - -+1 pro n&jaka &isla 0 < k < I—1. Toto vyjadfeni miZeme pomoci zndmého
vzorce upravit do tvarun = (14+2+---+1)—(14+24---+k) = l(l-2|-1) k(k+1) == k)(12+k+1)
Napi¥me si n ve tvaru n = 2™a, kde a je liché &slo. Pak 2™+1q = (I — k)(l +k+1).

Jak I — k, tak I+ k41 jsou &isla vétsi neZ 1; jejich soudet je lichy, takZe jedno z nich je liché, a
tedy a je v&tsi neZ 1. Cisla tvaru 2™ proto nejdou vyjad¥it jako soutet n&kolika po sob& jdoucich
disel.

P¥edpokladejme, e je naopak a > 1. Uv&dom si, %e pak je vidy jedno z &isel a — 2m+1 — 1
at2mti_y k a—2mt1_y
2 ) B = 2 a

a 2™+l _ 1 _ g nezéporné. V prvnim p¥ipadé mii¥eme volit | =

+1 +1
v druhém p¥ipad& zase | = # ak=2"""—a-1 Tui gsla podminky zadéni spliiuji,

dostali jsme tedy vyjadfeni n jako souétu nékolika po sobé jdoucich &isel.

The left-hand side can be written as (3 3(x))’. Then (by assumptions) F(z) := § f3(x)+ cos x has non-
negative derivative on R, and it is bounded on R;. Hence, lim,_,,, F(x) exists. Taking z,, := 7/2 + nx

and y, := 2n7 one can see that lim, ., f(z) does not exist.

Solution: If some 2 x 3 rectangle is covered by two corners, then
we may remove all of the corners except those two. Thus, we may
assume that no such rectangle exists.

We construct a directed graph whose vertices are the corners, as
follows: for each corner, draw the 2 x 2 square containing that corner,
and add an edge from this corner to the other corner covering the
remainder of the 2 x 2 square. If one corner has no edge pointing
toward it, we may remove that corner, so we may assume that no
such corner exists. Hence, each edge of the graph is in some cycle.
If there is more than one cycle, then we may remove all the corners
except those in a cycle of minimal length, and the required property
is preserved. Thus, it suffices to show that there cannot exist a single
cycle consisting of all 111 vertices.

By the center of a corner we refer to the point at the center of the
2 x 2 square containing that corner. Recalling that we assumed that
no two corners cover a 2 x 3 rectangle, one easily checks that if there
is an edge pointing from one corner to another, then these corners’
centers differ by 1 in both their z- and y- coordinates. Hence, in
any cycle, the z-coordinates of the vertices in that cycle alternate,
implying that the number of vertices in the cycle is even. Therefore,
there cannot be a cycle containing all 111 vertices, as desired.

Solution by John H. Smith, Needham, MA. Let R be such a ring. For x € R, let xR =
{xz: z € R}. We call x R maximal if it is not properly contained in yR for any y. By
the hypothesis, every element of R is in some such set. Since R is finite, each yR is
contained in a maximal such set.

When xR is maximal, we show that (i) x € xR, (ii) x R contains an element e, that
acts as a multiplicative identity on x R, (iii) if y R is also maximal, then xR = yR, and
(iv) x R = R. Together, (ii) and (iv) yield the desired multiplicative identity on R.

(i): We are given x = yz, which yields xR C yR. If x ¢ xR, then the containment
is proper, contradicting the maximality of x R.

(ii): Since x € xR, we have x = xe, = e, x (by commutativity) for some e, € R.
Hence xR C e, R, and these sets are equal by the maximality of xR. Thus also e, R is
maximal, and by (i) we have e, € e, R = xR. Since e,x = x, it follows for xy € xR
that e, xy = xy, and hence e, is a multipicative identity on x R.

(iii): Suppose that xR and y R are both maximal; let e, and e, be the corresponding
identity elements, and let f = e, + ¢, — e e,. We compute V

fx=ex+ex —(e)eyx =x+ex —eyx =x.

Similarly, fy = y, so f R contains both x R and y R. By maximality, f R equals both
X R and yR, and hence they equal each other.

(iv): Every element of R lies in some maximal set yR and hence in xR. Thus R =
XR.
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