Řešení 3. soutěžní série

1. First observe that if $A \subseteq X$ satisfies $f(A)=A$, then for every $a \in A, A$ contains the whole cycle of f containing a (f is a bijection on a finite set, and as such, it decomposes into cycles). Knowing this, we easily deduce that every A with $f(A)=A$ is the (disjoint) union of cycles of f, hence the number of such A 's equals $2^{\text {number of cycles of } f}$.
Alternative solution(s). The system of subsets $A \subseteq X$ with the property from the statement is closed under unions, intersections, and complements, and as such, it is a (finite) Boolean algebra. However, cardinality of every finite Boolean algebra is a power of 2. The same can be derived by viewing the system in question as a vector space over the two-element field.
2. Parciální zlomky dávají

$$
\frac{1}{k\left(k+\frac{1}{2}\right)}=\frac{2}{k}-\frac{2}{k+\frac{1}{2}} .
$$

Protože řada konverguje, stačí počítat limitu podposloupnosti částečných součtů $s_{2 N}$:

$$
\begin{aligned}
\sum_{k=1}^{2 N} \frac{1}{k\left(k+\frac{1}{2}\right)} & =2\left(1+\frac{1}{2}+\cdots+\frac{1}{2 N}-\frac{2}{3}-\frac{2}{5}-\frac{2}{4 N+1}\right) \\
& =2\left(1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\cdots-\frac{1}{2 N+1}\right)-4\left(\frac{1}{2 N+3}+\cdots+\frac{1}{4 N+1}\right) \\
& =2 A_{N}-4 B_{N} .
\end{aligned}
$$

První závorka, tj. A_{N}, konverguje k $2-\ln 2$ (známá řada pro logaritmus). Druhá závorka se odhadne pomocí integrálů:

$$
\int_{N+1}^{2 N+1} \frac{1}{2 x+1} \leq B_{N} \leq \int_{N}^{2 N} \frac{1}{2 x+1}
$$

tj.

$$
\frac{1}{2} \ln \frac{4 N+3}{2 N+3} \leq B_{N} \leq \frac{1}{2} \ln \frac{4 N+1}{2 N+1}
$$

takže $B_{N} \rightarrow \frac{1}{2} \ln 2$ a součet řady je $4-4 \ln 2$.
3. Suppose that P does not have n distinct roots. Then it has a root of multiplicity at least 2 , which we may assume is $x=0$ without loss of generality. Let x^{k} be the greatest power of x dividing $P(x)$, so that $P(x)=x^{k} R(x)$ with $R(0) \neq 0$ a simple computation yields

$$
P^{\prime \prime}(x)=\left(k^{2}-k\right) x^{k-2} R(x)+2 k x^{k-1} R^{\prime}(x)+x^{k} R^{\prime \prime}(x) .
$$

Since $R(0) \neq 0$ and $k \geq 2$, we conclude that the greatest power of x dividing $P^{\prime \prime}(x)$ is x^{k-2}. But $P(x)=Q(x) P^{\prime \prime}(x)$, and so x^{2} divides $Q(x)$. We deduce (since Q is quadratic) that $Q(x)$ is a constant C times x^{2}. In fact, $C=1 / n(n-1)$ by inspection of the leading-degree terms of $P(x)$ and $P^{\prime \prime}(x)$. Now if $P(x)=\sum_{j=0}^{n} a_{j} x^{j}$, then the relation $P(x)=C x^{2} P^{\prime \prime}(x)$ implies that $a_{j}=C j(j-1) a_{j}$ for all j, hence $a_{j}=0$ for $j \leq n-1$, and we conclude that $P(x)=a_{n} x^{n}$, which has all identical roots.
4.

Recall that $\operatorname{tr} X Y^{*}$ is a scalar product on the space of complex $n \times n$ matrices (* denotes the Hermitean conjugation, i.e. transpose + complex conjugate). Therefore to show that A and B commute, we may check that the norm of their commutator is zero:

$$
\begin{aligned}
\operatorname{tr}(A B-B A)(A B-B A)^{*} & =\operatorname{tr}(A B-B A)(B A-A B) \\
& =\operatorname{tr} A B B A-\operatorname{tr} A B A B-\operatorname{tr} B A B A+\operatorname{tr} B A A B=0
\end{aligned}
$$

(we have used the fact that $\operatorname{tr} X Y=\operatorname{tr} Y X$, the property of A, B being Hermitean, and the relation from the statement).
Alternative solution. We may w.l.o.g. assume that A is diagonal with the (real) eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal (the corresponding change of basis is orthonormal, so B stays Hermitean). Then A^{2} is diagonal with the diagonal $\lambda_{1}^{2}, \ldots, \lambda_{n}^{2}$, and since $B^{2}=B B^{*}$, the diagonal of B^{2} comprises of the Euclidean norms of the columns of B. Hence the i, i-th entry of $A^{2} B^{2}$ is

$$
\lambda_{i}^{2}\left(\left|b_{i 1}\right|^{2}+\cdots+\left|b_{i n}\right|^{2}\right)
$$

A similar computation reveals that the i, i-th entry of $(A B)^{2}$ is

$$
\lambda_{i}\left(\lambda_{1}\left|b_{i 1}\right|^{2}+\cdots+\lambda_{n}\left|b_{i n}\right|^{2}\right)
$$

Now we can examine the difference of the traces from the statement:

$$
0=\operatorname{tr}\left(A^{2} B^{2}-(A B)^{2}\right)=\sum_{i=1}^{n} \lambda_{i}\left(\sum_{j=1}^{n}\left(\lambda_{i}-\lambda_{j}\right)\left|b_{i j}\right|^{2}\right)=\sum_{1 \leq i<j \leq n}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left|b_{i j}\right|^{2}
$$

(the equality $\left|b_{i j}\right|=\left|b_{j i}\right|$ was exploited). This being the sum of non-negative reals, we infer that $\left(\lambda_{i}-\lambda_{j}\right) b_{i j}=0$ for all i, j. However, this is easily seen to be equivalent to $A B=B A$.

