
Řešení 3. soutěžní série
1. First observe that if A ⊆ X satisfies f(A) = A, then for every a ∈ A, A contains the
whole cycle of f containing a (f is a bijection on a finite set, and as such, it decomposes
into cycles). Knowing this, we easily deduce that every A with f(A) = A is the (disjoint)
union of cycles of f , hence the number of such A’s equals 2number of cycles of f .

Alternative solution(s). The system of subsets A ⊆ X with the property from the state-
ment is closed under unions, intersections, and complements, and as such, it is a (finite)
Boolean algebra. However, cardinality of every finite Boolean algebra is a power of 2.
The same can be derived by viewing the system in question as a vector space over the
two-element field.
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Protože řada konverguje, stačí počítat limitu podposloupnosti částečných součtů s2N :
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První závorka, tj. AN , konverguje k 2− ln 2 (známá řada pro logaritmus). Druhá závorka
se odhadne pomocí integrálů:∫ 2N+1
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takže BN → 1
2
ln 2 a součet řady je 4− 4 ln 2.

3. Suppose that P does not have n distinct roots. Then it has a root of multiplicity at least
2, which we may assume is x = 0 without loss of generality. Let xk be the greatest power
of x dividing P (x), so that P (x) = xkR(x) with R(0) 6= 0 a simple computation yields

P ′′(x) = (k2 − k)xk−2R(x) + 2kxk−1R′(x) + xkR′′(x).

Since R(0) 6= 0 and k ≥ 2, we conclude that the greatest power of x dividing P ′′(x) is xk−2.
But P (x) = Q(x)P ′′(x), and so x2 divides Q(x). We deduce (since Q is quadratic) that
Q(x) is a constant C times x2. In fact, C = 1/n(n− 1) by inspection of the leading-degree
terms of P (x) and P ′′(x). Now if P (x) =

∑n
j=0 ajx

j, then the relation P (x) = Cx2P ′′(x)

implies that aj = Cj(j − 1)aj for all j, hence aj = 0 for j ≤ n− 1, and we conclude that
P (x) = anx

n, which has all identical roots.
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Recall that trXY ∗ is a scalar product on the space of complex n× n matrices (∗ denotes
the Hermitean conjugation, i.e. transpose + complex conjugate). Therefore to show that
A and B commute, we may check that the norm of their commutator is zero:

tr(AB −BA)(AB −BA)∗ = tr(AB −BA)(BA− AB)

= trABBA− trABAB − trBABA+ trBAAB = 0

(we have used the fact that trXY = trY X, the property of A, B being Hermitean, and
the relation from the statement).
Alternative solution. Wemay w.l.o.g. assume that A is diagonal with the (real) eigenvalues
λ1, . . . , λn on the diagonal (the corresponding change of basis is orthonormal, so B stays
Hermitean). Then A2 is diagonal with the diagonal λ21, . . . , λ2n, and since B2 = BB∗, the
diagonal of B2 comprises of the Euclidean norms of the columns of B. Hence the i,i-th
entry of A2B2 is

λ2i (|bi1|2 + · · ·+ |bin|2).
A similar computation reveals that the i,i-th entry of (AB)2 is

λi(λ1|bi1|2 + · · ·+ λn|bin|2).
Now we can examine the difference of the traces from the statement:
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(the equality |bij| = |bji| was exploited). This being the sum of non-negative reals, we infer
that (λi− λj)bij = 0 for all i, j. However, this is easily seen to be equivalent to AB = BA.


