Qualification Round - Category II

February 21, 2014, room T7

Problem II. 1 Determine for which integers a the Diophantine equation

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{a}{x y z}
$$

has infinitely many integer solutions (x, y, z) such that $\operatorname{gcd}(a, x y z)=1$.

Problem II. 2 Let P be a partially ordered set where every chain and every antichain are finite. Show that P is finite.
Problem II. 3 Let G be a finite commutative group. Show that $\sum_{a \in G} a \neq 0$ if and only if G has exactly one member of order 2 .
Problem II. 4 Let $f_{1}:(0,1] \rightarrow \mathbb{R}$ and define $f_{n+1}(x):=x^{f_{n}(x)}$ for $x \in(0,1]$ and $n=1,2, \ldots$. Denote $a_{n}:=\lim _{x \rightarrow 0+} f_{n}(x)$ if it exists.
(a) Let m be such that a_{m} exists, $a_{m} \neq 0$. Prove that $\left|a_{k}-a_{k+1}\right|=1$ for all $k \geq m+2$.
(b) Does there exist f_{1} such that $a_{m}=0$ for all $m \in \mathbb{N}$?

A set M is a chain if every two members of M are comparable (for all x, $y \in M$ it holds that $x \leq y$ or $y \leq x$). A set M is an antichain if no two members of M are comparable (if for $x, y \in M$ we have $x \leq y$ or $y \leq x$, then neccessarily $x=y$).

