Qualification Round — Category II

February 21, 2014, room T7

Problem II.1 Determine for which integers *a* the Diophantine equation

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{a}{xyz}$$

has infinitely many integer solutions (x, y, z) such that gcd(a, xyz) = 1. (10 points)

Problem II.2 Let P be a partially ordered set where every chain and every
antichain are finite. Show that P is finite.(10 points)

Problem II.3 Let G be a finite commutative group. Show that $\sum_{a \in G} a \neq 0$ if and only if G has exactly one member of order 2. (10 points)

Problem II.4 Let $f_1: (0,1] \to \mathbb{R}$ and define $f_{n+1}(x) := x^{f_n(x)}$ for $x \in (0,1]$ and $n = 1, 2, \ldots$ Denote $a_n := \lim_{x \to 0^+} f_n(x)$ if it exists.

- (a) Let *m* be such that a_m exists, $a_m \neq 0$. Prove that $|a_k a_{k+1}| = 1$ for all $k \ge m + 2$.
- (b) Does there exist f_1 such that $a_m = 0$ for all $m \in \mathbb{N}$?

(10 points)

A set M is a chain if every two members of M are comparable (for all x, $y \in M$ it holds that $x \leq y$ or $y \leq x$). A set M is an antichain if no two members of M are comparable (if for $x, y \in M$ we have $x \leq y$ or $y \leq x$, then neccessarily x = y).