Qualification Round - Category I

February 21, 2014, room T7

Problem I. 1 Determine for which integers a the Diophantine equation

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{a}{x y z}
$$

has infinitely many integer solutions (x, y, z) such that $\operatorname{gcd}(a, x y z)=1$.
(10 points)
Problem I. 2 Suppose a, b, c, x, y, z are positive numbers such that $a+$ $b+c=x+y+z$ and $a b c=x y z$. Show that if $\max \{x, y, z\} \geq \max \{a, b, c\}$, then $\min \{x, y, z\} \geq \min \{a, b, c\}$.
(10 points)
Problem I. 3 Let A_{1}, \ldots, A_{n} be positive-definite 2×2 matrices of real numbers. Let G be the set of all unitary 2×2 complex matrices. Define $F: G^{n} \rightarrow \mathbb{R}$ by

$$
F\left(U_{1}, \ldots, U_{n}\right):=\operatorname{det}\left(\sum_{k=1}^{n} U_{k}^{*} A_{k} U_{k}\right)
$$

Show that

$$
\min _{U \in G^{n}} F(U)=\sum_{k=1}^{n} \sigma_{1}\left(A_{k}\right) \cdot \sum_{k=1}^{n} \sigma_{2}\left(A_{k}\right)
$$

where $\sigma_{1}\left(A_{j}\right)$ and $\sigma_{2}\left(A_{j}\right)$ denote the greatest and least eigenvalue of A_{j}, respectively.
(10 points)
Problem I. 4 Let $f_{1}:(0,1] \rightarrow \mathbb{R}$ and define $f_{n+1}(x):=x^{f_{n}(x)}$ for $x \in(0,1]$ and $n=1,2, \ldots$ Denote $a_{n}:=\lim _{x \rightarrow 0+} f_{n}(x)$ if it exists.
(a) Let m be such that a_{m} exists, $a_{m} \neq 0$. Prove that $\left|a_{k}-a_{k+1}\right|=1$ for all $k \geq m+2$.
(b) Does there exist f_{1} such that $a_{m}=0$ for all $m \in \mathbb{N}$?
(10 points)

If U is a matrix, then U^{*} denotes the transpose of the complex conjugate of U, i.e. $U^{*}=\bar{U}^{T}$. U is unitary if $U^{*} U=I$, where I is the identity matrix.

