Qualification Round — Category I

February 21, 2014, room T7

Problem I.1 Determine for which integers a the Diophantine equation

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{a}{xyz}$$

has infinitely many integer solutions (x, y, z) such that gcd(a, xyz) = 1. (10 points)

Problem I.2 Suppose a, b, c, x, y, z are positive numbers such that a + b + c = x + y + z and abc = xyz. Show that if $\max\{x, y, z\} \ge \max\{a, b, c\}$, then $\min\{x, y, z\} \ge \min\{a, b, c\}$. (10 points)

Problem I.3 Let A_1, \ldots, A_n be positive-definite 2×2 matrices of real numbers. Let G be the set of all unitary 2×2 complex matrices. Define $F: G^n \to \mathbb{R}$ by

$$F(U_1, ..., U_n) := \det\left(\sum_{k=1}^n U_k^* A_k U_k\right).$$

Show that

$$\min_{U \in G^n} F(U) = \sum_{k=1}^n \sigma_1(A_k) \cdot \sum_{k=1}^n \sigma_2(A_k),$$

where $\sigma_1(A_j)$ and $\sigma_2(A_j)$ denote the greatest and least eigenvalue of A_j , respectively. (10 points)

Problem I.4 Let $f_1: (0,1] \to \mathbb{R}$ and define $f_{n+1}(x) := x^{f_n(x)}$ for $x \in (0,1]$ and $n = 1, 2, \ldots$ Denote $a_n := \lim_{x \to 0^+} f_n(x)$ if it exists.

- (a) Let *m* be such that a_m exists, $a_m \neq 0$. Prove that $|a_k a_{k+1}| = 1$ for all $k \ge m + 2$.
- (b) Does there exist f_1 such that $a_m = 0$ for all $m \in \mathbb{N}$?

(10 points)

If U is a matrix, then U^* denotes the transpose of the complex conjugate of U, i.e. $U^* = \overline{U}^T$. U is unitary if $U^*U = I$, where I is the identity matrix.