THEORY OF INTERPOLATION 1 WINTER TERM 2024-2025

LUBOŠ PICK

1. INTRODUCTION

If not stated otherwise, (\mathcal{R}, μ) and (\mathcal{S}, ν) will throughout denote σ -finite measure spaces. By $\mathcal{M}(\mathcal{R}, \mu)$ (or just $\mathcal{M}(\mathcal{R})$ for short in cases when it is clear which measure is considered) we denote the set of all μ -measurable real-valued functions on \mathcal{R} , and by $\mathcal{M}_+(\mathcal{R}, \mu)$ the set of all nonnegative functions in $\mathcal{M}(\mathcal{R}, \mu)$. For $p \in [1, \infty]$, we define p' by

$$p' = \begin{cases} \infty & \text{if } p = 1, \\ \frac{p}{p-1} & \text{if } p \in (1, \infty), \\ 1 & \text{if } p = \infty. \end{cases}$$

If X and Y are (quasi)-normed spaces, we say that X is *embedded* into Y if there exists a constant C such that for every $x \in X$ one has $||x||_Y \leq C||x||_X$. By X + Y we denote the set of all elements z for which there exists a decomposition z = x + y with $x \in X$ and $y \in Y$. We define the functional $|| \cdot ||_{X+Y} : (X+Y) \to [0,\infty]$ by $||z||_{X+Y} = \inf_{z=x+y}(||x||_X + ||y||_Y)$.

Definition. The Laplace transform is defined by the formula

$$\mathcal{L}f(t) = \int_0^\infty f(s)e^{-st} \, ds \quad \text{for } t \in (0,\infty)$$

and every $f \in \mathcal{M}(0,\infty)$ for which the integral makes sense.

Remark. One has

$$\|\mathcal{L}f\|_{L^{\infty}(0,\infty)} \le \|f\|_{L^{1}(0,\infty)}.$$

Theorem 1 (Laplace transform on L^2). For every $f \in L^2(0,\infty)$ one has

$$\|\mathcal{L}f\|_{L^2(0,\infty)} \le \sqrt{\pi} \|f\|_{L^2(0,\infty)}.$$

The constant is optimal.

Theorem 2 (embeddings of Lebesgue spaces). Let $0 < p, q \leq \infty$. Then the embedding

$$L^q(\mathfrak{R},\mu) \hookrightarrow L^p(\mathfrak{R},\mu)$$

holds if and only if one of the following conditions hold:

- p = q,
- p < q and $\mu(\mathcal{R}) < \infty$,
- p > q and there is an ε > 0 such that for every measurable E ⊂ R of positive measure one has μ(E) ≥ ε.

2000 Mathematics Subject Classification. 47B38.

Key words and phrases. interpolation, operators, inequalities, function spaces.

Date: December 17, 2024.

LUBOŠ PICK

Theorem 3 (interpolation principle for Lebesgue spaces). Let $0 . Assume that <math>f \in L^p(\mathbb{R}, \mu) \cap L^q(\mathbb{R}, \mu)$. Let $\theta \in [0, 1]$ and let r be defined by

$$\frac{1}{r} = \frac{1-\theta}{p} + \frac{\theta}{q}$$

Then $f \in L^r(\mathfrak{R},\mu)$ and

$$||f||_r \le ||f||_p^{1-\theta} ||f||_q^{\theta}.$$

2. Classical interpolation theorems

2.1. Interpolation of positive operators.

Definition. Let T be an operator defined on simple functions on (\mathcal{R}, μ) with values in $\mathcal{M}(S, \nu)$. Let $p, q \in (0, \infty]$. We say that T is of strong type (p, q) if there exists a constant M such that

 $||Tf||_{L^q(S,\nu)} \leq M ||f||_{L^p(\mathcal{R},\mu)}$ for every μ -simple function f.

The smallest such M is called the norm of T and it is denoted by $||T||_{L^p \to L^q}$.

Theorem 4 (interpolation of positive linear operators). Let $1 \le p_0, p_1, q_0, q_1 \le \infty$ and $\theta \in [0, 1]$. Let

$$rac{1}{p}=rac{1- heta}{p_0}+rac{ heta}{p_1}\quad and\quad rac{1}{q}=rac{1- heta}{q_0}+rac{ heta}{q_1}.$$

Let T be a positive linear operator of the form

$$Tf(y) = \int_{R} f(x)A(x,y)d\mu(x) \quad for \ y \in S,$$

where A is a nonnegative measurable function on $\Re \times S$. Assume that T is of strong type (p_0, q_0) and, at the same time, of strong type (p_1, q_1) with norms M_0 and M_1 , respectively. Then T is of strong type (p, q) with norm M_{θ} satisfying

$$M_{\theta} \leq M_0^{1-\theta} M_1^{\theta}.$$

2.2. Riesz's-Thorin's interpolation theorem.

Theorem 5 (Hadamard's three-line theorem). Let F be a bounded continuous function on $\overline{\Omega}$ and analytic in Ω , where

$$\Omega = \{ z \in \mathbb{C} \colon \operatorname{Re} z \in (0, 1) \}.$$

Then the function M_{θ} , defined by

$$M_{\theta} = \sup\{|F(\theta + iy)| \colon y \in \mathbb{R}\} \quad for \ \theta \in [0, 1],$$

satisfies

$$M_{\theta} \le M_0^{1-\theta} M_1^{\theta} \quad for \ \theta \in [0,1].$$

Theorem 6 (the Riesz-Thorin interpolation theorem). Let $1 \le p_0, p_1, q_0, q_1 \le \infty$ and let $\theta \in [0, 1]$. Let T be a linear operator which is of strong type (p_0, q_0) with norm M_0 and, at the same time, of strong type (p_1, q_1) with norm M_1 . Suppose that

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \quad and \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.$$

Then T is of strong type (p,q) with norm M_{θ} satisfying

$$M_{\theta} \le 2M_0^{1-\theta} M_1^{\theta}.$$

The constant 2 can be dropped if the function spaces are complex.

Definition. The *Fourier transform* is defined by the formula

$$\mathcal{F}f(x) = \int_{\mathbb{R}^n} f(y) e^{2\pi i x y} \, dy \quad \text{for } x \in \mathbb{R}^n$$

and every $f \in \mathcal{M}(\mathbb{R}^n)$ for which the integral makes sense.

Theorem 7 (the Hausdorff–Young theorem). Assume that $1 \le p \le 2$. Then there exists a constant C such that

$$\|\mathcal{F}f\|_{L^{p'}(\mathbb{R}^n)} \le C \|f\|_{L^p(\mathbb{R}^n)}.$$
(2.1)

Theorem 8 (Young's convolution theorem). Let $p, q, r \in [1, \infty]$ and assume that

$$\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1.$$

Then

$$||f * g||_{L^r(\mathbb{R}^n)} \le ||f||_{L^p(\mathbb{R}^n)} ||g||_{L^q(\mathbb{R}^n)}.$$

2.3. Interpolation of compact operators.

Theorem 9 (interpolation of compact operators). Let $1 \le p_0, p_1, q_0, q_1 \le \infty$ and let T be a linear operator which is of strong type (p_0, q_0) and, at the same time, it is compact from $L^{p_1}(\mathbb{R}, \mu)$ to $L^{q_1}(S, \nu)$. Let $\theta \in (0, 1], \nu(S) < \infty$, and suppose that

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \quad and \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.$$

Then T is compact from $L^p(\mathfrak{R},\mu)$ to $L^q(S,\nu)$.

Corollary. The Hardy operator T, defined by

$$Tf(t) = \int_0^t f(s) \, ds \quad \text{for } t \in (0,1)$$

for every $f \in \mathcal{M}(0,1)$ for which the integral makes sense, is compact from $L^q(0,1)$ to $L^{\infty}(0,1)$ for every $q \in (1,\infty]$.

2.4. Interpolation of weak-type operators.

Definition. Let $n \in \mathbb{N}$ and $\gamma \in (0, n)$. The *Riesz potential* I_{γ} is defined by the formula

$$I_{\gamma}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\gamma}} \quad \text{for } x \in \mathbb{R}^n$$

and every function $f \in \mathcal{M}(\mathbb{R}^n)$ for which the integral makes sense.

Definition. Let $\delta > 0$. The *dilation operator* τ_{δ} is defined by the formula

$$\tau_{\delta} f(x) = f(\delta x) \quad \text{for } x \in \mathbb{R}^r$$

and every function $f \in \mathcal{M}(\mathbb{R}^n)$.

Theorem 10 (weak type estimate for the Riesz potential). Let $n \in \mathbb{N}$ and $\gamma \in (0, n)$. Then there exists a constant C such that

$$\sup_{\lambda \in (0,\infty)} \lambda | \{ x \in \mathbb{R}^n \colon |I_{\gamma}f(x)| > \lambda \} |^{1-\frac{\gamma}{n}} \le C ||f||_{L^1(\mathbb{R}^n)}$$

for every $f \in L^1(\mathbb{R}^n)$.

Definition. The Hardy averaging operator A is defined by the formula

$$Af(t) = \frac{1}{t} \int_0^t f(s) \, ds \quad \text{for } s \in (0, \infty)$$

and every function $f \in \mathcal{M}(0,\infty)$ for which the integral makes sense.

Remark. We have

$$\sup_{\lambda \in (0,\infty)} \lambda |\{x \in (0,\infty) \colon |Af(x)| > \lambda\}| \le ||f||_{L^1(0,\infty)}$$

for every $f \in L^1(0,\infty)$.

Theorem 11 (interpolation of weak-type operators in the diagonal case). Let T be a quasilinear operator, that is, T is positively homogeneous and, moreover,

$$|T(f+g)| \le K(|Tf| + |Tg|)$$

for some positive K and every f, g for which the right-hand side makes sense. Assume that there exists a constant C_{∞} such that

$$||Tf||_{L^{\infty}(S,\nu)} \le C_{\infty} ||f||_{L^{\infty}(\mathcal{R},\mu)}$$

for all $f \in L^{\infty}(\mathbb{R},\mu)$, and, at the same time, there exists a constant C_1 such that

$$\sup_{\lambda \in (0,\infty)} \lambda \nu(\{y \in S \colon |Tf(y)| > \lambda\}) \le C_1 \|f\|_{L^1(\mathcal{R},\mu)}$$

for all $f \in L^1(\mathbb{R},\mu)$. Then for every $p \in (1,\infty]$ there exists a constant C_p such that

$$||Tf||_{L^p(S,\nu)} \le C_p ||f||_{L^p(\mathcal{R},\mu)}$$

for every $f \in L^p(\mathbb{R}, \mu)$ and

$$C_p \le 2KC_1^{\frac{1}{p}} C_{\infty}^{1-\frac{1}{p}} \left(\frac{p}{p-1}\right)^{\frac{1}{p}}.$$

Definition. Let $n \in \mathbb{N}$ and $\gamma \in [0, n)$. The fractional maximal operator M_{γ} is defined by the formula

$$M_{\gamma}f(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\gamma}{n}}} \int_{Q} |f(y)| \, dy \quad \text{for } x \in \mathbb{R}^{n}$$

and every function $f \in L^1_{loc}(\mathbb{R}^n)$, where the supremum is extended over all cubes with sides parallel to coordinate axes. In particular, M_0 is the Hardy-Littlewood maximal operator.

Theorem 12 (Vitali-type covering theorem). Let \mathcal{B} be a finite collection of balls in \mathbb{R}^n . Then there is a disjoint subcollection \mathcal{B}' of \mathcal{B} such that

$$\bigcup_{B \in \mathcal{B}} B \subset \bigcup_{B \in \mathcal{B}'} 3B.$$
(2.2)

Theorem 13 (weak-type estimate for the Hardy–Littlewood maximal operator). One has

$$\sup_{\lambda \in (0,\infty)} \lambda |\{x \in \mathbb{R}^n \colon Mf(x) > \lambda\}| \le ||f||_{L^1(0,\infty)}$$
(2.3)

for every $f \in L^1_{loc}(\mathbb{R}^n)$.

2.5. Distribution function and nonincreasing rearrangement.

Definition. Let $f: (\mathcal{R}, \mu) \to \mathbb{R}$ be a measurable function. Then the function $f_*: [0, \infty) \to [0, \infty]$, defined by

$$f_*(\lambda) = \mu\left(\{x \in \mathcal{R} : |f(x)| > \lambda\}\right) \quad \text{for } \lambda \in [0, \infty), \tag{2.4}$$

is called the *distribution function* of f.

Definition. Let $f \in \mathcal{M}(\mathcal{R}, \mu)$. Then the function $f^* \colon [0, \infty) \to [0, \infty]$ defined by

 $f^*(t) = \inf\{\lambda > 0 : f_*(\lambda) \le t\} \quad \text{for } t \in [0, \infty),$

is called the *nonincreasing rearrangement* of f.

Observation. Assume that f is a measurable function. Then the following statements hold.

(a) for every s, t > 0, one has

$$s < f^*(t) \quad \Leftrightarrow \quad t < f_*(s),$$

(b) $(f^*)_* = f_*,$

(c) $(f_*)_* = f^*$,

(d) f_* and f^* are nonnegative, nonincreasing and right continuous (and thus lower semicontinuous) on $(0, \infty)$,

(e) one has

$$\int_{\mathcal{R}} |f| d\mu = \int_0^\infty f_*(s) \, ds.$$

Proposition. For every measurable function f, one has

$$\int_{\mathcal{R}} |f| d\mu = \int_0^\infty f_*(s) \, ds = \int_0^\infty f^*(t) \, dt.$$

Remark. Let $f \in \mathcal{M}(\mathcal{R}, \mu)$ and $p \in (0, \infty)$. Then

$$\int_R |f(x)|^p \, d\mu = \int_0^\infty f^*(t)^p \, dt.$$

Theorem 14 (basic estimates for f^* and f_*). Let f, g be measurable functions and let $\lambda, s, t > 0$. Then

(a) $f^*(f_*(\lambda)) \le \lambda$, (b) $f_*(f^*(t)) \le t$, (c) $(f+g)^*(s+t) \le f^*(s) + g^*(t)$.

Theorem 15 (the Hardy–Littlewood inequality). For every $f, g \in \mathcal{M}(\mathcal{R}, \mu)$, one has

$$\int_{\mathcal{R}} f(x)g(x) \, d\mu \le \int_0^\infty f^*(t)g^*(t) \, dt.$$

Definition. Let $f \in \mathcal{M}(\mathcal{R}, \mu)$. The we define the maximal nonincreasing rearrangement, f^{**} , of f, by

$$f^{**}(t) = \frac{1}{t} \int_0^t f^*(s) \, ds, \quad \text{for } t \in (0, \infty).$$

Remark. For every $f \in \mathcal{M}_0(\mathcal{R}, \mu)$, the function f^{**} is nonincreasing on $(0, \infty)$ and one has $f^*(t) \leq f^{**}(t)$ for every $t \in (0, \infty)$.

Definition. Let $f \in \mathcal{M}(\mathcal{R}, \mu)$ and $t \in (0, \mu(\mathbb{R})$. We say that a measurable function g is a *test* function for $f^{**}(t)$ if

$$0 \le g \le rac{1}{t}$$
 and $\int_{\mathcal{R}} g \, d\mu = 1.$

The collection of all test functions will be denoted by \mathcal{G}_t .

Theorem 16 (characterization of f^{**}). For every $f, g \in \mathcal{M}(\mathcal{R}, \mu)$ and t > 0, one has

$$f^{**}(t) = \sup_{g \in \mathfrak{S}_t} \int_{\mathfrak{R}} |f| g \, d\mu.$$

Corollary. The operation $f \mapsto f^{**}$ is subadditive.

LUBOŠ PICK

2.6. Lorentz spaces.

Definition. Let $f \in \mathcal{M}(\mathcal{R},\mu)$ and $g \in \mathcal{M}(S,\nu)$. We say that f and g are equimeasurable if they have the same distribution function, that is, if $f_*(\lambda) = g_*(\lambda)$ for all $\lambda \in [0,\infty)$. We write $f \sim g$. **Definition.** Assume that $p, q \in (0,\infty]$. We define the functional $\|\cdot\|_{p,q} \colon \mathcal{M}(\mathcal{R},\mu) \to [0,\infty]$ by

$$||f||_{p,q} = ||t^{\frac{1}{p} - \frac{1}{q}} f^*(t)||_{L^q(0,\infty)}.$$

In other words, we have

$$||f||_{L^{p,q}} = \begin{cases} \left(\int_0^\infty \left[t^{\frac{1}{p}} f^*(t) \right]^q \frac{dt}{t} \right)^{\frac{1}{q}} & \text{if } 0 < q < \infty, \\ \sup_{0 < t < \infty} t^{\frac{1}{p}} f^*(t) & \text{if } q = \infty. \end{cases}$$

The collection of all functions $f \in \mathcal{M}(\mathcal{R},\mu)$ such that $||f||_{p,q} < \infty$ is called the *Lorentz space* and is denoted by $L^{p,q}(\mathcal{R},\mu)$.

Theorem 17 (elementary properties of Lorentz spaces). For every $p, q \in (0, \infty]$, the Lorentz space $L^{p,q}$ is a linear set and the functional $\|\cdot\|_{p,q}$ is a quasinorm and an α -norm on $L^{p,q}$. Moreover, one has

$$\|f\|_{p,q} = p\|f_*(\lambda)^{\frac{q}{p}}\lambda^{1-\frac{1}{q}}\|_{L^q(0,\infty)} \quad for \ every \ f \in \mathfrak{M}(\mathcal{R},\mu).$$

Theorem 18 (Hanička's theorem). Let $f: (0, \mu(\mathcal{R})) \to [0, \infty]$ be right continuous and nonincreasing. Then, for every fixed $t \in (0, \mu(\mathcal{R}))$, the operator

$$f \mapsto \int_0^t f^*(s)h(s) \, ds$$

is subadditive on \mathfrak{M}_+ and also on \mathfrak{M}_0 .

Theorem 19 (on Lorentz norms). If $1 \le q \le p \le \infty$, then $\|\cdot\|_{p,q}$ is a norm.

Theorem 20 (embeddings of Lorentz spaces). Let $p, q, r \in [0, \infty]$ be such that $q \leq r$. Then $L^{p,q} \hookrightarrow L^{p,r}$.

Definition. Assume that $p, q \in (0, \infty]$. We define the functional $\|\cdot\|_{(p,q)} \colon \mathcal{M}(\mathcal{R}, \mu) \to [0, \infty]$ by

$$||f||_{(p,q)} = ||t^{\frac{1}{p} - \frac{1}{q}} f^{**}(t)||_{L^{q}(0,\infty)}.$$

Theorem 21 (Minkowski's integral inequality). Let (\mathcal{R}, μ) and (S, ν) be σ -finite measure spaces. Let $p \in [1, \infty)$ and let $F: (\mathcal{R} \times S) \to \mathbb{R}$ be measurable with respect to $\mu \times \nu$. Assume that

$$\int_{S} \left(\int_{R} |F(x,y)|^{p} d\mu(x) \right)^{\frac{1}{p}} d\nu(y)$$

Then $\int_{S} F(x,y) d\nu(y)$ converges for μ -a.e. $x \in \mathbb{R}$ and

$$\left(\int_{\mathcal{R}} \left| \int_{S} F(x,y) d\nu(y) \right|^{p} d\mu(x) \right)^{\frac{1}{p}} \leq \int_{S} \left(\int_{R} |F(x,y)|^{p} d\mu(x) \right)^{\frac{1}{p}} d\nu(y).$$

Theorem 22 (weighted Hardy's inequality). Let $1 and <math>f \in \mathcal{M}_+(0, \infty)$. If $\alpha , then$

$$\int_0^\infty \left(\frac{1}{t} \int_0^t f(s) \, ds\right)^p t^\alpha \, dt \le \left(\frac{p}{p-\alpha-1}\right)^p \int_0^\infty f(t)^p t^\alpha \, dt.$$

Theorem 23 (alternative norm in a Lorentz space). Assume that $p \in (1, \infty]$ and $q \in [1, \infty]$. Then $\|\cdot\|_{(p,q)}$ is a norm. Moreover, the functionals $\|\cdot\|_{(p,q)}$ and $\|\cdot\|_{p,q}$ are equivalent in the sense that there exists a constant C such that

$$||f||_{p,q} \le ||f||_{(p,q)} \le C ||f||_{p,q} \quad for \ every \ f \in \mathcal{M}(\mathcal{R},\mu).$$

2.7. Marcinkiewicz interpolation theorem.

Definition. Let $p \in [1, \infty)$, $q \in [1, \infty]$ and let T be an operator defined on $L^{p,1}(\mathcal{R}, \mu)$ and taking values in $\mathcal{M}(S, \nu)$. Then T is said to be of *weak type* (p, q) if it is a bounded operator from $L^{p,1}(\mathcal{R}, \mu)$ into $L^{q,\infty}(S, \nu)$, that is, if there exists a constant M such that

$$||Tf||_{q,\infty} \leq M ||f||_{p,q}$$
 for every $f \in L^{p,1}(\mathcal{R},\mu)$.

The lease such constant M is called the *weak-type* (p,q) norm of T. We say that T is of weak type (∞, q) if it is a bounded operator from $L^{\infty}(\mathcal{R}, \mu)$ into $L^{q,\infty}(S, \nu)$.

Theorem 24 (Marcinkiewicz's interpolation theorem). Let $1 \le p_0 < p_1 < \infty$, $1 \le q_0, q_1 \le \infty$, $q_0 \ne q_1, 0 < \theta < 1$ and $1 \le r \le \infty$. Let p, q be defined by the formulas

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \quad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}.$$

Let T be a quasilinear operator defined on $(L^{p_0,1} + L^{p_1,1})(\mathbb{R},\mu)$ and taking values in $\mathcal{M}(S,\nu)$. Let T be of weak types (p_0,q_0) and (p_1,q_1) with respective weak-type norms M_0 and M_1 . Then $T: L^{p,r} \to L^{q,r}$. More precisely, there exists a constant C such that

$$||Tf||_{q,r} \le \frac{C \max\{M_0, M_1\}}{\theta(1-\theta)} ||f||_{p,r}.$$

Remarks. (a) Theorem 24 holds also in the case $p_1 = \infty$ provided that the hypothesis "of weak type (p_1, q_1) " is replaced by "of strong type (p_1, q_1) ".

(b) If $p_i \leq q_i$, i = 0, 1, then it follows under the hypotheses of Theorem 24 that T is of strong type (p, q).

(c) The assumption $q_0 \neq q_1$ cannot be omitted. For instance, let α be a bounded linear functional on $L^1(0,1)$ and let the operator T be defined on $L^1(0,1)$ by

$$Tf(t) = \alpha(f) \frac{1}{\sqrt{t}}$$
 for $t \in (0, 1)$.

Then T is of weak type (1,2) and of weak type $(\infty,2)$, but it is not of strong type (2,2).

Example. Assume that $1 \le p \le 2$. Then there exists a constant C depending on n and p such that

$$\|\mathcal{F}f\|_{L^{p',p}(\mathbb{R}^n)} \le C \|f\|_{L^p(\mathbb{R}^n)} \quad \text{for every } f \in L^p(\mathbb{R}^n),$$

where \mathcal{F} denotes the Fourier transform. Note that, thanks to Theorem 19, this is a better estimate than (2.1).

Example. Let $n \in \mathbb{N}$, $\gamma \in (0, n)$ and $p \in (1, \frac{n}{n-\gamma})$. Then there exists a constant C depending on n, p and γ such that

$$\|I_{\gamma}f\|_{L^{\frac{np}{n-p},p}(\mathbb{R}^n)} \le C\|f\|_{L^p(\mathbb{R}^n)} \quad \text{for every } f \in L^p(\mathbb{R}^n),$$

where I_{γ} denotes the Riesz potential.

Example. Let $p \in (1, \infty]$. Then there exists a constant C depending on p such that

$$||Af||_{L^p(0,\infty)} \le C ||f||_{L^p(0,\infty)}$$
 for every $f \in L^p(0,\infty)$,

where A denotes the Hardy averaging operator.

Example. Let $p \in (1, \infty]$. Then there exists a constant C depending on p such that

 $\|\mathcal{L}f\|_{L^{p',p}(0,\infty)} \le C \|f\|_{L^p(0,\infty)} \quad \text{for every } f \in L^p(0,\infty),$

where \mathcal{L} denotes the Laplace transform.

Definition. The *Hilbert transform* H is defined by the formula

$$Hf(x) = p.v. \int_{-\infty}^{\infty} \frac{f(y)}{x-y} \text{ for } x \in \mathbb{R}$$

and every function $f \in \mathcal{M}(\mathbb{R})$ for which the integral makes sense.

Example. Let $p \in (1, \infty)$. Then there exists a constant C depending on p such that

$$||Hf||_{L^p(0,\infty)} \le C ||f||_{L^p(0,\infty)} \quad \text{for every } f \in L^p(0,\infty),$$

where ${\cal H}$ denotes the Hilbert transform.

Email address: pick@karlin.mff.cuni.cz ORCiD: 0000-0002-3584-1454

 $^3\mathrm{Department}$ of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186
 75 Praha 8, Czech Republic