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1. Introduction

If not stated otherwise, (R, µ) and (S, ν) will throughout denote σ-finite measure spaces. By
M(R, µ) (or just M(R) for short in cases when it is clear which measure is considered) we denote
the set of all µ-measurable real-valued functions on R, and byM+(R, µ) the set of all nonnegative
functions in M(R, µ). For p ∈ [1,∞], we define p′ by

p′ =


∞ if p = 1,
p

p−1 if p ∈ (1,∞),

1 if p = ∞.

If X and Y are (quasi)-normed spaces, we say that X is embedded into Y if there exists a
constant C such that for every x ∈ X one has ∥x∥Y ≤ C∥x∥X . By X + Y we denote the set
of all elements z for which there exists a decomposition z = x + y with x ∈ X and y ∈ Y . We
define the functional ∥ · ∥X+Y : (X + Y ) → [0,∞] by ∥z∥X+Y = infz=x+y(∥x∥X + ∥y∥Y ).

Definition. The Laplace transform is defined by the formula

Lf(t) =

∫ ∞

0
f(s)e−st ds for t ∈ (0,∞)

and every f ∈ M(0,∞) for which the integral makes sense.

Remark. One has

∥Lf∥L∞(0,∞) ≤ ∥f∥L1(0,∞).

Theorem 1 (Laplace transform on L2). For every f ∈ L2(0,∞) one has

∥Lf∥L2(0,∞) ≤
√
π∥f∥L2(0,∞).

The constant is optimal.

Theorem 2 (embeddings of Lebesgue spaces). Let 0 < p, q ≤ ∞. Then the embedding

Lq(R, µ) ↪→ Lp(R, µ)

holds if and only if one of the following conditions hold:

• p = q,
• p < q and µ(R) < ∞,
• p > q and there is an ε > 0 such that for every measurable E ⊂ R of positive measure
one has µ(E) ≥ ε.

Date: December 17, 2024.
2000 Mathematics Subject Classification. 47B38.
Key words and phrases. interpolation, operators, inequalities, function spaces.

1



2 LUBOŠ PICK

Theorem 3 (interpolation principle for Lebesgue spaces). Let 0 < p < r < q ≤ ∞. Assume
that f ∈ Lp(R, µ) ∩ Lq(R, µ). Let θ ∈ [0, 1] and let r be defined by

1

r
=

1− θ

p
+

θ

q
.

Then f ∈ Lr(R, µ) and

∥f∥r ≤ ∥f∥1−θ
p ∥f∥θq.

2. Classical interpolation theorems

2.1. Interpolation of positive operators.

Definition. Let T be an operator defined on simple functions on (R, µ) with values in M(S, ν).
Let p, q ∈ (0,∞]. We say that T is of strong type (p, q) if there exists a constant M such that

∥Tf∥Lq(S,ν) ≤ M∥f∥Lp(R,µ) for every µ-simple function f.

The smallest such M is called the norm of T and it is denoted by ∥T∥Lp→Lq .

Theorem 4 (interpolation of positive linear operators). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and θ ∈ [0, 1].
Let

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+

θ

q1
.

Let T be a positive linear operator of the form

Tf(y) =

∫
R
f(x)A(x, y)dµ(x) for y ∈ S,

where A is a nonnegative measurable function on R×S. Assume that T is of strong type (p0, q0)
and, at the same time, of strong type (p1, q1) with norms M0 and M1, respectively. Then T is
of strong type (p, q) with norm Mθ satisfying

Mθ ≤ M1−θ
0 M θ

1 .

2.2. Riesz’s-Thorin’s interpolation theorem.

Theorem 5 (Hadamard’s three-line theorem). Let F be a bounded continuous function on Ω
and analytic in Ω, where

Ω = {z ∈ C : Re z ∈ (0, 1)}.
Then the function Mθ, defined by

Mθ = sup{|F (θ + iy)| : y ∈ R} for θ ∈ [0, 1],

satisfies

Mθ ≤ M1−θ
0 M θ

1 for θ ∈ [0, 1].

Theorem 6 (the Riesz–Thorin interpolation theorem). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and let θ ∈
[0, 1]. Let T be a linear operator which is of strong type (p0, q0) with norm M0 and, at the same
time, of strong type (p1, q1) with norm M1. Suppose that

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+

θ

q1
.

Then T is of strong type (p, q) with norm Mθ satisfying

Mθ ≤ 2M1−θ
0 M θ

1 .

The constant 2 can be dropped if the function spaces are complex.
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Definition. The Fourier transform is defined by the formula

Ff(x) =

∫
Rn

f(y)e2πixy dy for x ∈ Rn

and every f ∈ M(Rn) for which the integral makes sense.

Theorem 7 (the Hausdorff–Young theorem). Assume that 1 ≤ p ≤ 2. Then there exists a
constant C such that

∥Ff∥Lp′ (Rn) ≤ C∥f∥Lp(Rn). (2.1)

Theorem 8 (Young’s convolution theorem). Let p, q, r ∈ [1,∞] and assume that

1

r
=

1

p
+

1

q
− 1.

Then
∥f ∗ g∥Lr(Rn) ≤ ∥f∥Lp(Rn)∥g∥Lq(Rn).

2.3. Interpolation of compact operators.

Theorem 9 (interpolation of compact operators). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and let T be a linear
operator which is of strong type (p0, q0) and, at the same time, it is compact from Lp1(R, µ) to
Lq1(S, ν). Let θ ∈ (0, 1], ν(S) < ∞, and suppose that

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+

θ

q1
.

Then T is compact from Lp(R, µ) to Lq(S, ν).

Corollary. The Hardy operator T , defined by

Tf(t) =

∫ t

0
f(s) ds for t ∈ (0, 1)

for every f ∈ M(0, 1) for which the integral makes sense, is compact from Lq(0, 1) to L∞(0, 1)
for every q ∈ (1,∞].

2.4. Interpolation of weak-type operators.

Definition. Let n ∈ N and γ ∈ (0, n). The Riesz potential Iγ is defined by the formula

Iγf(x) =

∫
Rn

f(y)

|x− y|n−γ
for x ∈ Rn

and every function f ∈ M(Rn) for which the integral makes sense.

Definition. Let δ > 0. The dilation operator τδ is defined by the formula

τδf(x) = f(δx) for x ∈ Rn

and every function f ∈ M(Rn).

Theorem 10 (weak type estimate for the Riesz potential). Let n ∈ N and γ ∈ (0, n). Then
there exists a constant C such that

sup
λ∈(0,∞)

λ|{x ∈ Rn : |Iγf(x)| > λ}|1−
γ
n ≤ C∥f∥L1(Rn)

for every f ∈ L1(Rn).

Definition. The Hardy averaging operator A is defined by the formula

Af(t) =
1

t

∫ t

0
f(s) ds for s ∈ (0,∞)

and every function f ∈ M(0,∞) for which the integral makes sense.
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Remark. We have

sup
λ∈(0,∞)

λ|{x ∈ (0,∞) : |Af(x)| > λ}| ≤ ∥f∥L1(0,∞)

for every f ∈ L1(0,∞).

Theorem 11 (interpolation of weak-type operators in the diagonal case). Let T be a quasilinear
operator, that is, T is positively homogeneous and, moreover,

|T (f + g)| ≤ K(|Tf |+ |Tg|)
for some positive K and every f, g for which the right-hand side makes sense. Assume that there
exists a constant C∞ such that

∥Tf∥L∞(S,ν) ≤ C∞∥f∥L∞(R,µ)

for all f ∈ L∞(R, µ), and, at the same time, there exists a constant C1 such that

sup
λ∈(0,∞)

λν({y ∈ S : |Tf(y)| > λ}) ≤ C1∥f∥L1(R,µ)

for all f ∈ L1(R, µ). Then for every p ∈ (1,∞] there exists a constant Cp such that

∥Tf∥Lp(S,ν) ≤ Cp∥f∥Lp(R,µ)

for every f ∈ Lp(R, µ) and

Cp ≤ 2KC
1
p

1 C
1− 1

p
∞

(
p

p− 1

) 1
p

.

Definition. Let n ∈ N and γ ∈ [0, n). The fractional maximal operator Mγ is defined by the
formula

Mγf(x) = sup
Q∋x

1

|Q|1−
γ
n

∫
Q
|f(y)| dy for x ∈ Rn

and every function f ∈ L1
loc(Rn), where the supremum is extended over all cubes with sides

parallel to coordinate axes. In particular, M0 is the Hardy–Littlewood maximal operator.

Theorem 12 (Vitali-type covering theorem). Let B be a finite collection of balls in Rn. Then
there is a disjoint subcollection B′ of B such that⋃

B∈B
B ⊂

⋃
B∈B′

3B. (2.2)

Theorem 13 (weak-type estimate for the Hardy–Littlewood maximal operator). One has

sup
λ∈(0,∞)

λ|{x ∈ Rn : Mf(x) > λ}| ≤ ∥f∥L1(0,∞) (2.3)

for every f ∈ L1
loc(Rn).

2.5. Distribution function and nonincreasing rearrangement.

Definition. Let f : (R, µ) → R be a measurable function. Then the function f∗ : [0,∞) →
[0,∞], defined by

f∗(λ) = µ ({x ∈ R : |f(x)| > λ}) for λ ∈ [0,∞), (2.4)

is called the distribution function of f .

Definition. Let f ∈ M(R, µ). Then the function f∗ : [0,∞) → [0,∞] defined by

f∗(t) = inf{λ > 0 : f∗(λ) ≤ t} for t ∈ [0,∞),

is called the nonincreasing rearrangement of f .
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Observation. Assume that f is a measurable function. Then the following statements hold.
(a) for every s, t > 0, one has

s < f∗(t) ⇔ t < f∗(s),

(b) (f∗)∗ = f∗,
(c) (f∗)∗ = f∗,
(d) f∗ and f∗ are nonnegative, nonincreasing and right continuous (and thus lower semicon-

tinuous) on (0,∞),
(e) one has ∫

R

|f |dµ =

∫ ∞

0
f∗(s) ds.

Proposition. For every measurable function f , one has∫
R

|f |dµ =

∫ ∞

0
f∗(s) ds =

∫ ∞

0
f∗(t) dt.

Remark. Let f ∈ M(R, µ) and p ∈ (0,∞). Then∫
R
|f(x)|p dµ =

∫ ∞

0
f∗(t)p dt.

Theorem 14 (basic estimates for f∗ and f∗). Let f, g be measurable functions and let λ, s, t > 0.
Then

(a) f∗(f∗(λ)) ≤ λ,
(b) f∗(f

∗(t)) ≤ t,
(c) (f + g)∗(s+ t) ≤ f∗(s) + g∗(t).

Theorem 15 (the Hardy–Littlewood inequality). For every f, g ∈ M(R, µ), one has∫
R

f(x)g(x) dµ ≤
∫ ∞

0
f∗(t)g∗(t) dt.

Definition. Let f ∈ M(R, µ). The we define the maximal nonincreasing rearrangement, f∗∗, of
f , by

f∗∗(t) =
1

t

∫ t

0
f∗(s) ds, for t ∈ (0,∞).

Remark. For every f ∈ M0(R, µ), the function f∗∗ is nonincreasing on (0,∞) and one has
f∗(t) ≤ f∗∗(t) for every t ∈ (0,∞).

Definition. Let f ∈ M(R, µ) and t ∈ (0, µ(R). We say that a measurable function g is a test
function for f∗∗(t) if

0 ≤ g ≤ 1

t
and

∫
R

g dµ = 1.

The collection of all test functions will be denoted by Gt.

Theorem 16 (characterization of f∗∗). For every f, g ∈ M(R, µ) and t > 0, one has

f∗∗(t) = sup
g∈Gt

∫
R

|f |g dµ.

Corollary. The operation f 7→ f∗∗ is subadditive.
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2.6. Lorentz spaces.

Definition. Let f ∈ M(R, µ) and g ∈ M(S, ν). We say that f and g are equimeasurable if they
have the same distribution function, that is, if f∗(λ) = g∗(λ) for all λ ∈ [0,∞). We write f ∼ g.

Definition. Assume that p, q ∈ (0,∞]. We define the functional ∥ · ∥p,q : M(R, µ) → [0,∞] by

∥f∥p,q = ∥t
1
p
− 1

q f∗(t)∥Lq(0,∞).

In other words, we have

∥f∥Lp,q =


(∫ ∞

0

[
t
1
p f∗(t)

]q dt
t

) 1
q

if 0 < q < ∞,

sup
0<t<∞

t
1
p f∗(t) if q = ∞.

The collection of all functions f ∈ M(R, µ) such that ∥f∥p,q < ∞ is called the Lorentz space and
is denoted by Lp,q(R, µ).

Theorem 17 (elementary properties of Lorentz spaces). For every p, q ∈ (0,∞], the Lorentz
space Lp,q is a linear set and the functional ∥ · ∥p,q is a quasinorm and an α-norm on Lp,q.
Moreover, one has

∥f∥p,q = p∥f∗(λ)
q
pλ

1− 1
q ∥Lq(0,∞) for every f ∈ M(R, µ).

Theorem 18 (Hanička’s theorem). Let f : (0, µ(R)) → [0,∞] be right continuous and nonin-
creasing. Then, for every fixed t ∈ (0, µ(R)), the operator

f 7→
∫ t

0
f∗(s)h(s) ds

is subadditive on M+ and also on M0.

Theorem 19 (on Lorentz norms). If 1 ≤ q ≤ p ≤ ∞, then ∥ · ∥p,q is a norm.

Theorem 20 (embeddings of Lorentz spaces). Let p, q, r ∈ [0,∞] be such that q ≤ r. Then
Lp,q ↪→ Lp,r.

Definition. Assume that p, q ∈ (0,∞]. We define the functional ∥ · ∥(p,q) : M(R, µ) → [0,∞] by

∥f∥(p,q) = ∥t
1
p
− 1

q f∗∗(t)∥Lq(0,∞).

Theorem 21 (Minkowski’s integral inequality). Let (R, µ) and (S, ν) be σ-finite measure spaces.
Let p ∈ [1,∞) and let F : (R× S) → R be measurable with respect to µ× ν. Assume that∫

S

(∫
R
|F (x, y)|p dµ(x)

) 1
p

dν(y).

Then
∫
S F (x, y)dν(y) converges for µ-a.e. x ∈ R and(∫

R

∣∣∣∣∫
S
F (x, y)dν(y)

∣∣∣∣p dµ(x)) 1
p

≤
∫
S

(∫
R
|F (x, y)|p dµ(x)

) 1
p

dν(y).

Theorem 22 (weighted Hardy’s inequality). Let 1 < p < ∞ and f ∈ M+(0,∞). If α < p− 1,
then ∫ ∞

0

(
1

t

∫ t

0
f(s) ds

)p

tα dt ≤
(

p

p− α− 1

)p ∫ ∞

0
f(t)ptα dt.

Theorem 23 (alternative norm in a Lorentz space). Assume that p ∈ (1,∞] and q ∈ [1,∞].
Then ∥ · ∥(p,q) is a norm. Moreover, the functionals ∥ · ∥(p,q) and ∥ · ∥p,q are equivalent in the
sense that there exists a constant C such that

∥f∥p,q ≤ ∥f∥(p,q) ≤ C∥f∥p,q for every f ∈ M(R, µ).
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2.7. Marcinkiewicz interpolation theorem.

Definition. Let p ∈ [1,∞), q ∈ [1,∞] and let T be an operator defined on Lp,1(R, µ) and
taking values in M(S, ν). Then T is said to be of weak type (p, q) if it is a bounded operator
from Lp,1(R, µ) into Lq,∞(S, ν), that is, if there exists a constant M such that

∥Tf∥q,∞ ≤ M∥f∥p,q for every f ∈ Lp,1(R, µ).

The lease such constant M is called the weak-type (p, q) norm of T . We say that T is of weak
type (∞, q) if it is a bounded operator from L∞(R, µ) into Lq,∞(S, ν).

Theorem 24 (Marcinkiewicz’s interpolation theorem). Let 1 ≤ p0 < p1 < ∞, 1 ≤ q0, q1 ≤ ∞,
q0 ̸= q1, 0 < θ < 1 and 1 ≤ r ≤ ∞. Let p, q be defined by the formulas

1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+

θ

q1
.

Let T be a quasilinear operator defined on (Lp0,1 + Lp1,1)(R, µ) and taking values in M(S, ν).
Let T be of weak types (p0, q0) and (p1, q1) with respective weak-type norms M0 and M1. Then
T : Lp,r → Lq,r. More precisely, there exists a constant C such that

∥Tf∥q,r ≤
Cmax{M0,M1}

θ(1− θ)
∥f∥p,r.

Remarks. (a) Theorem 24 holds also in the case p1 = ∞ provided that the hypothesis “of weak
type (p1, q1)” is replaced by “of strong type (p1, q1)”.

(b) If pi ≤ qi, i = 0, 1, then it follows under the hypotheses of Theorem 24 that T is of strong
type (p, q).

(c) The assumption q0 ̸= q1 cannot be omitted. For instance, let α be a bounded linear
functional on L1(0, 1) and let the operator T be defined on L1(0, 1) by

Tf(t) = α(f)
1√
t

for t ∈ (0, 1).

Then T is of weak type (1, 2) and of weak type (∞, 2), but it is not of strong type (2, 2).

Example. Assume that 1 ≤ p ≤ 2. Then there exists a constant C depending on n and p such
that

∥Ff∥Lp′,p(Rn) ≤ C∥f∥Lp(Rn) for every f ∈ Lp(Rn),

where F denotes the Fourier transform. Note that, thanks to Theorem 19, this is a better
estimate than (2.1).

Example. Let n ∈ N, γ ∈ (0, n) and p ∈ (1, n
n−γ ). Then there exists a constant C depending

on n, p and γ such that

∥Iγf∥
L

np
n−p ,p

(Rn)
≤ C∥f∥Lp(Rn) for every f ∈ Lp(Rn),

where Iγ denotes the Riesz potential.

Example. Let p ∈ (1,∞]. Then there exists a constant C depending on p such that

∥Af∥Lp(0,∞) ≤ C∥f∥Lp(0,∞) for every f ∈ Lp(0,∞),

where A denotes the Hardy averaging operator.

Example. Let p ∈ (1,∞]. Then there exists a constant C depending on p such that

∥Lf∥Lp′,p(0,∞) ≤ C∥f∥Lp(0,∞) for every f ∈ Lp(0,∞),

where L denotes the Laplace transform.
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Definition. The Hilbert transform H is defined by the formula

Hf(x) = p.v.

∫ ∞

−∞

f(y)

x− y
for x ∈ R

and every function f ∈ M(R) for which the integral makes sense.

Example. Let p ∈ (1,∞). Then there exists a constant C depending on p such that

∥Hf∥Lp(0,∞) ≤ C∥f∥Lp(0,∞) for every f ∈ Lp(0,∞),

where H denotes the Hilbert transform.
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