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1. INTRODUCTION

If not stated otherwise, (R, u) and (8,v) will throughout denote o-finite measure spaces. By
M(R, p) (or just M(R) for short in cases when it is clear which measure is considered) we denote
the set of all yu-measurable real-valued functions on R, and by M (R, u1) the set of all nonnegative
functions in M(R, ). For p € [1, 00|, we define p’ by

oo ifp=1,
p = 1% if p € (1, 00),
1 if p = oco.

If X and Y are (quasi)-normed spaces, we say that X is embedded into Y if there exists a
constant C' such that for every z € X one has [|z]y < C|lz||x. By X +Y we denote the set
of all elements z for which there exists a decomposition z =z +y with z € X and y € Y. We
define the functional || - || x4ty : (X +Y) = [0,00] by ||| x4y = inf.—sry (|| x + [|¥]lv)-

Definition. The Laplace transform is defined by the formula
Lf(t) = / f(s)e™stds for t € (0,00)
0

and every f € M(0,00) for which the integral makes sense.
Remark. One has
1L f Nl oo (0,00) < 1 f1121(0,00)-

Theorem 1 (Laplace transform on L?). For every f € L?(0,00) one has

1€ £l 200,000 < VTIF Il 22(0,00)-
The constant is optimal.
Theorem 2 (embeddings of Lebesgue spaces). Let 0 < p,q < oo. Then the embedding
LYR, 1) = LP(R, p)
holds if and only if one of the following conditions hold:
*p=gq,
e p<qand u(R) < oo,

e p > g and there is an € > 0 such that for every measurable E C R of positive measure
one has u(E) > e.
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Theorem 3 (interpolation principle for Lebesgue spaces). Let 0 < p < r < ¢ < 0o. Assume
that f € LP(R,u) N LY(R, ). Let 6 € [0,1] and let r be defined by

1 1-0 6

rop q
Then f € L"(R,u) and
111 < 11 A1

2. CLASSICAL INTERPOLATION THEOREMS
2.1. Interpolation of positive operators.

Definition. Let 7" be an operator defined on simple functions on (R, ) with values in M(S, v).
Let p,q € (0,00]. We say that T is of strong type (p,q) if there exists a constant M such that

ITfllrags,y < M| fllzr(r,) for every p-simple function f.
The smallest such M is called the norm of T and it is denoted by ||T'||Lr—ra-

Theorem 4 (interpolation of positive linear operators). Let 1 < pg,p1,qo,q1 < oo and 6 € [0, 1].

Let
1 1-6 0 1 1-6 0
= +— and -= + —.
p Po b1 q 40 qn
Let T be a positive linear operator of the form

Tf(y) = /R (@) Az, y)dp(z) fory € 5,

where A is a nonnegative measurable function on R x S. Assume that T is of strong type (po, qo)
and, at the same time, of strong type (p1,q1) with norms My and M, respectively. Then T is
of strong type (p,q) with norm My satisfying

My < MI~0MF.
2.2. Riesz’s-Thorin’s interpolation theorem.

Theorem 5 (Hadamard’s three-line theorem). Let F be a bounded continuous function on Q
and analytic in €, where

Q={z€C: Reze (0,1)}.
Then the function My, defined by
My = sup{|F(0 +iy)|: y € R} for6 € |0,1],
satisfies
My < M3=MY{  for 6 € [0,1].
Theorem 6 (the Riesz—Thorin interpolation theorem). Let 1 < pg,p1,qo,q1 < oo and let 0 €

[0,1]. Let T' be a linear operator which is of strong type (po, qo) with norm My and, at the same
time, of strong type (p1,q1) with norm M. Suppose that
1 1-6 0 1 1—-6 6
+— and - = + —.
p bo b1 q q0 q1

Then T is of strong type (p,q) with norm My satisfying
My < 2M} =M}

The constant 2 can be dropped if the function spaces are complex.
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Definition. The Fourier transform is defined by the formula
Ff(z) = f(y)e*™ @ dy  for x € R"
Rn

and every f € M(R"™) for which the integral makes sense.

Theorem 7 (the Hausdorff-~Young theorem). Assume that 1 < p < 2. Then there exists a
constant C such that

15 £l ey < Cll Loy (2.1)
Theorem 8 (Young’s convolution theorem). Let p,q,r € [1,00] and assume that

1 1 1

L

r . p g

Then
1f * gllor@ny < 1 fllze@ny 9]l arny-

2.3. Interpolation of compact operators.

Theorem 9 (interpolation of compact operators). Let 1 < pg, p1,qo,q1 < oo and let T be a linear
operator which is of strong type (po,qo) and, at the same time, it is compact from LP*(R, pu) to
Lo (S,v). Let 6 € (0,1], v(S) < 0o, and suppose that

1 1-6 0 1 1-60 0
+— and - = +—.

p Po P q qo0 a1
Then T is compact from LP(R, pn) to L1(S,v).

Corollary. The Hardy operator T, defined by

t
Tf(t) :/ f(s)ds forte (0,1)
0
for every f € M(0,1) for which the integral makes sense, is compact from L1(0,1) to L*°(0,1)
for every q € (1, <].
2.4. Interpolation of weak-type operators.

Definition. Let n € N and v € (0,n). The Riesz potential I, is defined by the formula
L f(z) = / L)_ for x € R"

and every function f € M(R"™) for which the integral makes sense.

Definition. Let § > 0. The dilation operator 5 is defined by the formula
75f(x) = f(dx) for z € R"

and every function f € M(R").

Theorem 10 (weak type estimate for the Riesz potential). Let n € N and v € (0,n). Then
there exists a constant C' such that

S )Ar{x eR™: L f(z)] > M%< C|lfll 12 @ny
€(0,00

for every f € L*(R™).
Definition. The Hardy averaging operator A is defined by the formula
1 t
Af(t) = t/ f(s)ds for s € (0,00)
0

and every function f € M(0, c0) for which the integral makes sense.
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Remark. We have

sup. A{z € (0,00): [Af(z)] > A} < [[fllz1(0,00)
A€(0,00)

for every f € L'(0,00).

Theorem 11 (interpolation of weak-type operators in the diagonal case). Let T be a quasilinear
operator, that is, T is positively homogeneous and, moreover,

T(f +9)l < K(TFl+1T9gl)

for some positive K and every f, g for which the right-hand side makes sense. Assume that there
exists a constant Cy, such that

I T fllzoo(5) < Cooll fll oo (®,p0)
for all f € L®(R, i), and, at the same time, there exists a constant C1 such that

\Sup )AV({y €S:Tfy) > AY) < Cillfllzr
€(0,00

for all f € LY(R, ). Then for every p € (1,00] there exists a constant C, such that
1T fllrcsw) < Cpll fllrr,p
for every f € LP(R, u) and
sl (PP

Definition. Let n € N and v € [0,n). The fractional mazimal operator M., is defined by the
formula

1 n

M. f(e) = sup - [ [f(g)ldy forx € R
Q3 [Q Jq

1

and every function f € Ly .(R"), where the supremum is extended over all cubes with sides
parallel to coordinate axes. In particular, My is the Hardy—Littlewood mazximal operator.

Theorem 12 (Vitali-type covering theorem). Let B be a finite collection of balls in R™. Then
there is a disjoint subcollection B’ of B such that

JBc | 3B (2.2)
BeB BeB!
Theorem 13 (weak-type estimate for the Hardy-Littlewood maximal operator). One has

2 Mo € B M (@) > M < oo (2.3)
€(0,00

for every f € LL (R™).
2.5. Distribution function and nonincreasing rearrangement.

Definition. Let f: (R,u) — R be a measurable function. Then the function f,: [0,00) —
[0, 0], defined by
o) =p({z e R:[f(z)| > A})  for A€ [0,00), (2.4)

is called the distribution function of f.
Definition. Let f € M(R, ). Then the function f*: [0,00) — [0, 0o| defined by
[5(t) =inf{\ > 0: fu(\) <t} forte[0,00),

is called the nonincreasing rearrangement of f.
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Observation. Assume that f is a measurable function. Then the following statements hold.
(a) for every s,t > 0, one has

s<[H(t) & t<[fils),

(b) (f*)x = fs,
E (fe)s =7,

d) f. and f* are nonnegative, nonincreasing and right continuous (and thus lower semicon-
tinuous) on (0, 0o0),

c)
(e) one has
[ isidn= [~ .ods

Proposition. For every measurable function f, one has

L idn= [ ras= [ o

Remark. Let f € M(R, ) and p € (0,00). Then

i@ [ .

Theorem 14 (basic estimates for f* and f.). Let f, g be measurable functions and let A, s,t > 0.
Then
) <

(a) [*(f+(A)
(b) fi(f* (1) <
(c) (f+9)" (S+t) < f(s) +97(1).
Theorem 15 (the Hardy-Littlewood inequality). For every f,g € M(R, ), one has

/yf(w) d/~¢</ ft

Definition. Let f € M(R, ). The we define the mazimal nonincreasing rearrangement, f**, of
[, by

t
= 1/0 f*(s)ds, forte (0,00).

Remark. For every f € My(R, u), the function f** is nonincreasing on (0,00) and one has
FE(t) < f**(t) for every t € (0,00).

Definition. Let f € M(R, ) and ¢ € (0, u(R). We say that a measurable function g is a test
function for f**(t) if

| =

0<g< - and /gd,uzl.
R
The collection of all test functions will be denoted by ;.

Theorem 16 (characterization of f**). For every f,g € M(R, ) and t > 0, one has

= sup / | flg dp.

9g€G:

Corollary. The operation f +— f** is subadditive.



6 LUBOS PICK

2.6. Lorentz spaces.

Definition. Let f € M(R, ) and g € M(S,v). We say that f and g are equimeasurable if they
have the same distribution function, that is, if f.(A) = g«(A) for all A € [0,00). We write f ~ g.

Definition. Assume that p,q € (0, 00]. We define the functional || - ||, 4: M(R, p) — [0, 00] by
11
1fllp.g = It 0 f* (@)l La0,00)

In other words, we have

” (Awpaw@riﬁq if0 < g < oo,
Lpa =

1
sup tr f*(t) if ¢ = o0
0<t<oo

The collection of all functions f € M(R, p) such that || f||,, < oo is called the Lorentz space and
is denoted by LP2(R, ).

Theorem 17 (elementary properties of Lorentz spaces). For every p,q € (0,00], the Lorentz
space LY is a linear set and the functional || - ||pq is a quasinorm and an o-norm on LP9.
Moreover, one has

g -1
0 = PIF PN T Lao0)  for every | € MR, p).
Theorem 18 (Hanicka’s theorem). Let f: (0, u(R)) — [0,00] be right continuous and nonin-
creasing. Then, for every fized t € (0, u(R)), the operator

fH/f

is subadditive on M4 and also on My.

Theorem 19 (on Lorentz norms). If 1 < q < p < oo, then || - ||pq is a norm.

Theorem 20 (embeddings of Lorentz spaces). Let p,q,r € [0,00] be such that ¢ < r. Then
LPd s [P

Definition. Assume that p,q € (0,00]. We define the functional | - ||, ¢): M(R, ) — [0, 00] by

1y = 16775 ()| a(0,00)-

Theorem 21 (Minkowski’s integral inequality). Let (R, 1) and (S, v) be o-finite measure spaces.
Let p € [1,00) and let F': (R x S) — R be measurable with respect to u x v. Assume that

([ remr i >) av(y).

Then [q F(x,y)dv(y) converges for p-a.e. x € R and

(Ll Femif ae > < [ ([ re o >) av(y).

Theorem 22 (weighted Hardy’s inequality). Let 1 < p < 0o and f € M4 (0,00). Ifa<p—1,

then ®© /1 t p P [e)
b a b Py
/0 <t/0 f(s)ds) 1 dt < (p_a_1> /0 F()PE di.

Theorem 23 (alternative norm in a Lorentz space). Assume that p € (1,00] and q € [1,c].
Then || - |l(p,q) is @ norm. Moreover, the functionals || - and || - ||p,q are equivalent in the
sense that there exists a constant C such that

1fllpa < W fllway < Cllifllpg  for every f e MR, ).

| (p:9)
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2.7. Marcinkiewicz interpolation theorem.

Definition. Let p € [1,00), ¢ € [1,00] and let T be an operator defined on LP'(R, ) and
taking values in M(S,v). Then T is said to be of weak type (p,q) if it is a bounded operator
from LPY(R, u) into L9°(S,v), that is, if there exists a constant M such that

ITfllgo0 < M| fllpg for every f € LPH(R, ).

The lease such constant M is called the weak-type (p,q) norm of T. We say that T is of weak
type (00, q) if it is a bounded operator from L™ (R, ) into L2*°(S,v).

Theorem 24 (Marcinkiewicz’s interpolation theorem). Let 1 < pg < p1 < oo, 1 < qo,q1 < 0,
g #q,0<0<1andl <r<oo. Let p,q be defined by the formulas
1 1-6 0 1 1-6 0

+ = +

P p p ¢ @ @
Let T be a quasilinear operator defined on (LPO! + LPLY) (R, 1) and taking values in M(S,v).
Let T be of weak types (po,qo) and (p1,q1) with respective weak-type norms My and My. Then
T: LP" — L7, More precisely, there exists a constant C such that
C maX{M(], Ml}
1 1lp,r-
0(1—0)

Remarks. (a) Theorem 24| holds also in the case p; = oo provided that the hypothesis “of weak
type (p1,q1)” is replaced by “of strong type (p1,q1)”.
(b) If p; < ¢, 1 = 0,1, then it follows under the hypotheses of Theorem [24] that T is of strong

type (p, q)-
(¢c) The assumption gy # ¢ cannot be omitted. For instance, let a be a bounded linear

functional on L'(0,1) and let the operator T be defined on L'(0,1) by

1T fllgr <

Tf(t)=a(f)— forte(0,1).

Then T is of weak type (1,2) and of weak type (00,2), but it is not of strong type (2,2).

Example. Assume that 1 < p < 2. Then there exists a constant C' depending on n and p such
that

1Ff 1l o pny < CllfllLr@ny  for every f € LP(R"),
where J denotes the Fourier transform. Note that, thanks to Theorem this is a better

estimate than ([2.1)).

Example. Let n € N, v € (0,n) and p € (1, Tﬁv) Then there exists a constant C' depending
on n,p and vy such that

11,1, 2 gy < Clfllisqay  for every f € LV(R)
where I, denotes the Riesz potential.

Example. Let p € (1,00]. Then there exists a constant C' depending on p such that
1Al zr0,00) < CllflLr(0,00) for every f € LP(0,00),

where A denotes the Hardy averaging operator.

Example. Let p € (1,00]. Then there exists a constant C' depending on p such that
£l ome) < Cllfllinooey  for every f € LP(0,00),

where £ denotes the Laplace transform.
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Definition. The Hilbert transform H is defined by the formula

Hf(x)=pw. il forx € R
o T —Y

and every function f € M(R) for which the integral makes sense.

Example. Let p € (1,00). Then there exists a constant C' depending on p such that
1H fllzr(0,00) < Cllflr(0,00)  for every f € LF(0,00),

where H denotes the Hilbert transform.

Email address: pick@karlin.mff.cuni.cz
ORCiD: 0000-0002-3584-1454

SDEPARTMENT OF MATHEMATICAL ANALYSIS, FACULTY OF MATHEMATICS AND PHYSICS, CHARLES UNIVER-
SITY, SOKOLOVSKA 83, 186 75 PrAHA 8, CzECH REPUBLIC



	1. Introduction
	2. Classical interpolation theorems
	2.1. Interpolation of positive operators
	2.2. Riesz's-Thorin's interpolation theorem
	2.3. Interpolation of compact operators
	2.4. Interpolation of weak-type operators
	2.5. Distribution function and nonincreasing rearrangement
	2.6. Lorentz spaces
	2.7. Marcinkiewicz interpolation theorem


